Bio-nanotechnology has emerged as an efficient and competitive methodology for the production of added-value nanomaterials (NMs). This review article gathers knowledge gleaned from the literature regarding the biosynthesis of sulfur-based chalcogenide nanoparticles (S-NPs), such as CdS, ZnS and PbS NPs, using various biological resources, namely bacteria, fungi including yeast, algae, plant extracts, single biomolecules, and viruses. In addition, this work sheds light onto the hypothetical mechanistic aspects, and discusses the impact of varying the experimental parameters, such as the employed bio-entity, time, pH, and biomass concentration, on the obtained S-NPs and, consequently, on their properties. Furthermore, various bio-applications of these NMs are described. Finally, key elements regarding the whole process are summed up and some hints are provided to overcome encountered bottlenecks towards the improved and scalable production of biogenic S-NPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779671PMC
http://dx.doi.org/10.3390/molecules27020458DOI Listing

Publication Analysis

Top Keywords

sulfur-based chalcogenide
8
mechanistic aspects
8
biogenic sulfur-based
4
chalcogenide nanocrystals
4
nanocrystals methods
4
methods fabrication
4
fabrication mechanistic
4
aspects bio-applications
4
bio-applications bio-nanotechnology
4
bio-nanotechnology emerged
4

Similar Publications

The aqueous zinc-sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum(IV) sulfide (MoS) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid-solid and solid-liquid interfaces using experimental and theoretical approaches.

View Article and Find Full Text PDF

The role of arsenic in the operation of sulfur-based electrical threshold switches.

Nat Commun

September 2023

National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.

Arsenic is an essential dopant in conventional silicon-based semiconductors and emerging phase-change memory (PCM), yet the detailed functional mechanism is still lacking in the latter. Here, we fabricate chalcogenide-based ovonic threshold switching (OTS) selectors, which are key units for suppressing sneak currents in 3D PCM arrays, with various As concentrations. We discovered that incorporation of As into GeS brings >100 °C increase in crystallization temperature, remarkably improving the switching repeatability and prolonging the device lifetime.

View Article and Find Full Text PDF

Bio-nanotechnology has emerged as an efficient and competitive methodology for the production of added-value nanomaterials (NMs). This review article gathers knowledge gleaned from the literature regarding the biosynthesis of sulfur-based chalcogenide nanoparticles (S-NPs), such as CdS, ZnS and PbS NPs, using various biological resources, namely bacteria, fungi including yeast, algae, plant extracts, single biomolecules, and viruses. In addition, this work sheds light onto the hypothetical mechanistic aspects, and discusses the impact of varying the experimental parameters, such as the employed bio-entity, time, pH, and biomass concentration, on the obtained S-NPs and, consequently, on their properties.

View Article and Find Full Text PDF

Quaternary chalcogenides continue to be of interest due to the variety of physical properties they possess, as well as their potential for different applications of interest. Investigations on materials with the sphalerite crystal structure have only recently begun. In this study we have synthesized sulfur-based sphalerite quaternary chalcogenides, including off-stoichiometric compositions, and investigated the temperature-dependent electronic, thermal and structural properties of these materials.

View Article and Find Full Text PDF

Straightforward synthetic routes to the preparation of transition metal phosphides or their chalcogenide analogues are highly desired due to their widespread applications, including catalysis. We report a facile and simple route for the preparation of a pure phase nickel phosphide (NiP) and phase transformations in the nickel sulfide (NiS) system through a solvent-less synthetic protocol. Decomposition of different sulfur-based complexes (dithiocarbamate, xanthate, and dithiophosphonate) of nickel(II) was investigated in the presence and absence of triphenylphosphine (TPP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!