Facile Multiple Alkylations of C Fullerene.

Molecules

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

Published: January 2022

The reduction of fullerene (C) with sodium dispersion in the presence of an excess amount of dipropyl sulfate was found to yield highly propylated fullerene, C(CH) (max. = 24), and C(CH) was predominantly generated as determined by mass spectroscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779915PMC
http://dx.doi.org/10.3390/molecules27020450DOI Listing

Publication Analysis

Top Keywords

facile multiple
4
multiple alkylations
4
alkylations fullerene
4
fullerene reduction
4
reduction fullerene
4
fullerene sodium
4
sodium dispersion
4
dispersion presence
4
presence excess
4
excess amount
4

Similar Publications

Flexible Passive Wireless Sensing Platform with Frequency Mapping and Multimodal Fusion.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China.

As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT.

View Article and Find Full Text PDF

Programmable Food-Derived Peptide Coassembly Strategies for Boosting Targeted Colitis Therapy by Enhancing Oral Bioavailability and Restoring Gut Microenvironment Homeostasis.

ACS Nano

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.

Article Synopsis
  • Recent advancements in orally-targeted nanostrategies using multiple nutraceuticals show promise for ulcerative colitis therapy, improving patient compliance and effectiveness despite challenges like poor solubility and gastrointestinal retention.
  • The study introduces nanoparticles crafted from quaternary ammonium chitosan and succinic acid-modified γ-cyclodextrin, with egg white-derived peptides enhancing the delivery and bioavailability of hydrophobic curcumin.
  • Findings indicate that these nanoparticles significantly increase cellular absorption and oral bioavailability, support colonic microenvironment interactions, and promote intestinal health through improved amino acid metabolism.
View Article and Find Full Text PDF

This study describes a microfluidic thread-based analytical device (μTAD) capable of in situ mass spectrometric analysis for continuous flow reaction monitoring. Organic reaction screening is foundational to drug discovery. Microfluidic devices are of special interest here because they provide continuous reaction monitoring with advantages such as the use of smaller reagent volumes and short analysis times.

View Article and Find Full Text PDF

Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).

View Article and Find Full Text PDF

High-Performance Boiling Surfaces Enabled by an Electrode-Transpose All-Electrochemical Strategy.

Adv Sci (Weinh)

December 2024

Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.

High-performance boiling surfaces are in great demand for efficient cooling of high-heat-flux devices. Although various micro-/nano-structured surfaces have been engineered toward higher surface wettability and wickability for enhanced boiling, the design and fabrication of surface structures for realizing both high critical heat flux (CHF) and high heat transfer coefficient (HTC) remain a key challenge. Here, a novel "electrode-transpose" all-electrochemical strategy is proposed to create superhydrophilic microporous surfaces with higher dendrites and larger pores by simply adding an electrochemical etching step prior to the multiple electrochemical deposition steps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!