Dynamic Changes in Anthocyanin Accumulation and Cellular Antioxidant Activities in Two Varieties of Grape Berries during Fruit Maturation under Different Climates.

Molecules

Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Research Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.

Published: January 2022

As popularly consumed fruit berries, grapes are widely planted and processed into products, such as raisins and wine. In order to identify the influences of different climatic conditions on grape coloring and quality formation, we selected two common varieties of grape berries, 'Red Globe' and 'Xin Yu', for investigation. Grapes were separately grown in different climates, such as a temperate continental arid climate and a temperate continental desert climate, in Urumqi and Turpan, China, for five developmental stages. As measured, the average daily temperature and light intensity were lower in Urumqi. Urumqi grape berries had a lower brightness value (L*) and a higher red-green value (a*) when compared to Turpan's. A RT-qPCR analysis revealed higher transcriptions of key genes related to anthocyanin biosynthesis in Urumqi grape berries, which was consistent with the more abundant phenolic substances, especially anthocyanins. The maximum antioxidant activity in vitro and cellular antioxidant activity of grape berries were also observed in Urumqi grape berries. These findings enclosed the influence of climate on anthocyanin accumulation and the antioxidant capacity of grapes, which might enlarge our knowledge on the quality formation of grape berries and might also be helpful for cultivating grapes with higher nutritional value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782009PMC
http://dx.doi.org/10.3390/molecules27020384DOI Listing

Publication Analysis

Top Keywords

grape berries
28
urumqi grape
12
anthocyanin accumulation
8
cellular antioxidant
8
grape
8
varieties grape
8
berries
8
quality formation
8
temperate continental
8
antioxidant activity
8

Similar Publications

Sour rot (SR) is a late-season non-Botrytis rot affecting grapevines, resulting from a complex interplay of microorganisms, including non-Saccharomyces yeasts and acetic acid bacteria. Nonmicrobial factors contributing to disease development encompass vectors (e.g.

View Article and Find Full Text PDF

DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.

View Article and Find Full Text PDF

Research progress in the application of infrared blanching in fruit and vegetable drying process.

Compr Rev Food Sci Food Saf

January 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.

Fruits and vegetables offer substantial nutritional and health benefits, but their short shelf life necessitates effective preservation methods. Conventional drying techniques, while efficient, often lead to deterioration in food quality. Recent advancements highlight the potential of infrared blanching (IRB) as a preparatory process to improve drying outcomes.

View Article and Find Full Text PDF

Fruit dropping represents a concern in many fruit species, including L. This research investigated the role of two plant growth regulators (PGRs), naphthaleneacetic acid (NAA) and 1-methylcyclopropene (1-MCP), in mitigating preharvest berry dropping (PHBD) through affecting ethylene (ET) and auxin (AUX) metabolism and interactions, key hormones involved in abscission. The experiment was carried out on cv.

View Article and Find Full Text PDF

Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals ( L. subsp. (C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!