A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Opto-Microfluidic Fabry-Perot Sensor with Extended Air Cavity and Enhanced Pressure Sensitivity. | LitMetric

Opto-Microfluidic Fabry-Perot Sensor with Extended Air Cavity and Enhanced Pressure Sensitivity.

Micromachines (Basel)

The Center for Smart Sensing System (S3), Julong College, Shenzhen Technology University, Shenzhen 518118, China.

Published: December 2021

An opto-microfluidic static pressure sensor based on a fiber Fabry-Perot Interferometer (FPI) with extended air cavity for enhancing the measuring sensitivity is proposed. The FPI is constructed in a microfluidic channel by the combination of the fixed fiber-end reflection and floating liquid surface reflection faces. A change of the aquatic pressure will cause a drift of the liquid surface and the pressure can be measured by detecting the shift of the FPI spectrum. Sensitivity of the sensor structure can be enhanced significantly by extending the air region of the FPI. The structure is manufactured by using a common single-mode optical fiber, and a silica capillary with the inner wall coated with a hydrophobic film. A sample with 3500 μm air cavity length has demonstrated the pressure sensitivity of about 32.4 μm/kPa, and the temperature cross-sensitivity of about 0.33 kPa/K.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781981PMC
http://dx.doi.org/10.3390/mi13010019DOI Listing

Publication Analysis

Top Keywords

air cavity
12
extended air
8
pressure sensitivity
8
liquid surface
8
pressure
5
opto-microfluidic fabry-perot
4
fabry-perot sensor
4
sensor extended
4
air
4
cavity enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!