Passivated Porous Silicon Membranes and Their Application to Optical Biosensing.

Micromachines (Basel)

Institute of Information and Communication Technologies, Electronics, and Applied Mathematics, UCLouvain, 1348 Louvain-la-Neuve, Belgium.

Published: December 2021

A robust fabrication method for stable mesoporous silicon membranes using standard microfabrication techniques is presented. The porous silicon membranes were passivated through the atomic layer deposition of different metal oxides, namely aluminium oxide AlO, hafnium oxide HfO and titanium oxide TiO. The fabricated membranes were characterized in terms of morphology, optical properties and chemical properties. Stability tests and optical probing noise level determination were also performed. Preliminary results using an AlO passivated membranes for a biosensing application are also presented for selective optical detection of bacterial lysate. The biosensor was able to detect the bacterial lysate, with an initial bacteria concentration of 10 colony forming units per mL (CFU/mL), in less than 10 min.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779296PMC
http://dx.doi.org/10.3390/mi13010010DOI Listing

Publication Analysis

Top Keywords

silicon membranes
12
porous silicon
8
bacterial lysate
8
membranes
5
passivated porous
4
membranes application
4
optical
4
application optical
4
optical biosensing
4
biosensing robust
4

Similar Publications

Localized Nanopore Fabrication in Silicon Nitride Membranes by Femtosecond Laser Exposure and Subsequent Controlled Breakdown.

ACS Appl Mater Interfaces

January 2025

Division of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.

Controlled breakdown has emerged as an effective method for fabricating solid-state nanopores in thin suspended dielectric membranes for various biomolecular sensing applications. On an unpatterned membrane, the site of nanopore formation by controlled breakdown is random. Nanopore formation on a specific site on the membrane has previously been realized using local thinning of the membrane by lithographic processes or laser-assisted photothermal etching under immersion in an aqueous salt solution.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Nano-Perforated Silicon Membrane with Monolithically Integrated Buried Cavity.

Micromachines (Basel)

January 2025

DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Ørsteds Plads B347, 2800 Kongens Lyngby, Denmark.

A wafer-scale process for fabricating monolithically suspended nano-perforated membranes (NPMs) with integrated support structures into silicon is developed. Existing fabrication methods are suitable for many desired geometries, but face challenges related to mechanical robustness and fabrication complexity. We demonstrate a process that utilizes the cyclic deposit, remove, etch, and multi-step (DREM) process for directional etching of high-aspect-ratio (HAR) 300 nm in diameter nano-pores of 700 nm pitch.

View Article and Find Full Text PDF

Mapping Surface Potential in DNA Aptamer-Neurochemical and Membrane-Ion Interactions on the SOS Substrate Using Terahertz Microscopy.

Biosensors (Basel)

January 2025

Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.

In this study, we utilized a terahertz chemical microscope (TCM) to map surface potential changes induced by molecular interactions on silicon-on-sapphire (SOS) substrates. By functionalizing the SOS substrate with DNA aptamers and an ion-selective membrane, we successfully detected and visualized aptamer-neurochemical complexes through the terahertz amplitude. Additionally, comparative studies of DNA aptamers in PBS buffer and artificial cerebrospinal fluid (aCSF) were performed by computational structure modeling and terahertz measurements.

View Article and Find Full Text PDF

A two-dimensional array of microfluidic ports with remote-controlled valve actuation is of great interest for applications involving localized chemical stimulation. Herein, a macroporous silicon-based platform where each pore contains an independently controllable valve made from poly(N-isopropylacrylamide) (PNIPAM) brushes is proposed. These valves are coated with silica-encapsulated gold nanorods (GNRs) for NIR-actuated switching capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!