A robust fabrication method for stable mesoporous silicon membranes using standard microfabrication techniques is presented. The porous silicon membranes were passivated through the atomic layer deposition of different metal oxides, namely aluminium oxide AlO, hafnium oxide HfO and titanium oxide TiO. The fabricated membranes were characterized in terms of morphology, optical properties and chemical properties. Stability tests and optical probing noise level determination were also performed. Preliminary results using an AlO passivated membranes for a biosensing application are also presented for selective optical detection of bacterial lysate. The biosensor was able to detect the bacterial lysate, with an initial bacteria concentration of 10 colony forming units per mL (CFU/mL), in less than 10 min.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779296 | PMC |
http://dx.doi.org/10.3390/mi13010010 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Division of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.
Controlled breakdown has emerged as an effective method for fabricating solid-state nanopores in thin suspended dielectric membranes for various biomolecular sensing applications. On an unpatterned membrane, the site of nanopore formation by controlled breakdown is random. Nanopore formation on a specific site on the membrane has previously been realized using local thinning of the membrane by lithographic processes or laser-assisted photothermal etching under immersion in an aqueous salt solution.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Ørsteds Plads B347, 2800 Kongens Lyngby, Denmark.
A wafer-scale process for fabricating monolithically suspended nano-perforated membranes (NPMs) with integrated support structures into silicon is developed. Existing fabrication methods are suitable for many desired geometries, but face challenges related to mechanical robustness and fabrication complexity. We demonstrate a process that utilizes the cyclic deposit, remove, etch, and multi-step (DREM) process for directional etching of high-aspect-ratio (HAR) 300 nm in diameter nano-pores of 700 nm pitch.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
In this study, we utilized a terahertz chemical microscope (TCM) to map surface potential changes induced by molecular interactions on silicon-on-sapphire (SOS) substrates. By functionalizing the SOS substrate with DNA aptamers and an ion-selective membrane, we successfully detected and visualized aptamer-neurochemical complexes through the terahertz amplitude. Additionally, comparative studies of DNA aptamers in PBS buffer and artificial cerebrospinal fluid (aCSF) were performed by computational structure modeling and terahertz measurements.
View Article and Find Full Text PDFGels
January 2025
Department of Electrical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
A two-dimensional array of microfluidic ports with remote-controlled valve actuation is of great interest for applications involving localized chemical stimulation. Herein, a macroporous silicon-based platform where each pore contains an independently controllable valve made from poly(N-isopropylacrylamide) (PNIPAM) brushes is proposed. These valves are coated with silica-encapsulated gold nanorods (GNRs) for NIR-actuated switching capability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!