Microelectromechanical systems (MEMS) are the instruments of choice for high-precision manipulation and sensing processes at the microscale. They are, therefore, a subject of interest in many leading industrial and academic research sectors owing to their superior potential in applications requiring extreme precision, as well as in their use as a scalable device. Certain applications tend to require a MEMS device to function with low operational temperatures, as well as within fully immersed conditions in various media and with different flow parameters. This study made use of a V-shaped electrothermal actuator to demonstrate a novel, state-of-the-art numerical methodology with a two-way coupled analysis. This methodology included the effects of fluid-structure interaction between the MEMS device and its surrounding fluid and may be used by MEMS design engineers and analysts at the design stages of their devices for a more robust product. Throughout this study, a thermal-electric finite element model was strongly coupled to a finite volume model to incorporate the spatially varying cooling effects of the surrounding fluid (still air) onto the V-shaped electrothermal device during steady-state operation. The methodology was compared to already established and accepted analysis methods for MEMS electrothermal actuators in still air. The maximum device temperatures for input voltages ranging from 0 V to 10 V were assessed. During the postprocessing routine of the two-way electrothermal actuator coupled analysis, a spatially-varying heat transfer coefficient was evident, the magnitude of which was orders of magnitude larger than what is typically applied to macro-objects operating in similar environmental conditions. The latter phenomenon was correlated with similar findings in the literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781855 | PMC |
http://dx.doi.org/10.3390/mi13010008 | DOI Listing |
J Comput Chem
January 2025
Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile.
The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
College of Engineering, Design, and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
The ability to control and manipulate biological fluids within microchannels is a fundamental challenge in biological diagnosis and pharmaceutical analyses, particularly when buffers with very high ionic strength are used. In this study, we investigate the numerical and experimental study of fluidic biochips driven by ac electrothermal flow for controlling and manipulating biological samples inside a microchannel, e.g.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Wuhan Institute of Shipbuilding Technology, Wuhan 430050, China.
The loofah sponge has a complex, three-dimensional, porous mesh fiber structure characterized by markedly low density and excellent vibration isolation properties. In this study, loofah sponges made from dried were divided into two components: the core unit and the shell unit, which were further subdivided into five regions. Static compression performance tests and vibration isolation analysis were conducted on the loofah sponge and its individual parts.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, 90-924 Łódź, Poland.
The main aim of this study is to achieve the numerical solution for the Navier-Stokes equations for incompressible, non-turbulent, and subsonic fluid flows with some Gaussian physical uncertainties. The higher-order stochastic finite volume method (SFVM), implemented according to the iterative generalized stochastic perturbation technique and the Monte Carlo scheme, are engaged for this purpose. It is implemented with the aid of the polynomial bases for the pressure-velocity-temperature (PVT) solutions, for which the weighted least squares method (WLSM) algorithm is applicable.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.
Low-frequency transducers are considerably smaller than the wavelength. When multiple low-frequency transducers are closely packed, they couple with the surrounding water and form a transducer-water-transducer coupling structure called multi-element coupled transducers (MCT). This study presents a theoretical model of the MCT based on radiation and mutual radiation theory and analyzes it under multiple resonance frequencies and vibration modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!