Infertility is an emerging health issue worldwide, and female infertility is intimately associated with embryo implantation failure. Embryo implantation is an essential process during the initiation of prenatal development. Recent studies have strongly suggested that autophagy in the endometrium is the most important factor for successful embryo implantation. In addition, several studies have reported the effects of various natural products on infertility improvement via the regulation of embryo implantation, embryo quality, and endometrial receptivity. However, it is unclear whether natural products can improve embryo implantation ability by regulating endometrial autophagy. Therefore, we performed a literature review of studies on endometrial autophagy, embryo implantation, natural products, and female infertility. Based on the information from these studies, this review suggests a new treatment strategy for female infertility by proposing natural products that have been proven to be safe and effective as endometrial autophagy regulators; additionally, we provide a comprehensive understanding of the relationship between the regulation of endometrial autophagy by natural products and female infertility, with an emphasis on embryo implantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779555PMC
http://dx.doi.org/10.3390/ph15010053DOI Listing

Publication Analysis

Top Keywords

embryo implantation
32
natural products
24
female infertility
16
endometrial autophagy
16
embryo
9
implantation
8
products female
8
autophagy
6
natural
6
products
6

Similar Publications

Effects of vaginal microbiota on fertilization outcomes in women with different infertility causes.

Microbiol Spectr

January 2025

School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.

Unlabelled: Backed by advancements in technologies like microbial sequencing, many studies indicate that the vaginal microbiome is a key marker of female reproductive health. However, further studies are still needed to investigate the correlation between vaginal microbiota (VMB) and outcomes of assisted reproductive technology (ART). Therefore, this study compared the VMB of two types of infertile women undergoing fertilization (IVF) with normal control women during the implantation window period and investigated the effects of VMB characteristics on IVF outcomes.

View Article and Find Full Text PDF

Mechanism of hsa_circ_0069443 promoting early pregnancy loss through ALKBH5/FN1 axis in trophoblast cells.

iScience

January 2025

Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.

Studies have shown that circRNAs play an important regulatory role in trophoblast function and embryonic development. Based on sequencing and functional experiments, we found that hsa_circ_0069443 can regulate the function of trophoblast cells, and its presence is found in the exosomes secreted by trophoblast cells. It is known that exosomes mediate the interaction between the uterus and embryo, which is crucial for successful pregnancy.

View Article and Find Full Text PDF

Primitive to visceral endoderm maturation is essential for mouse epiblast survival beyond implantation.

iScience

January 2025

Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.

The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.

View Article and Find Full Text PDF

Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair.

View Article and Find Full Text PDF

A Qualitative Exploration of Emotional Experiences in Patients with Thin Endometrium Undergoing Repeated Cancellations of Frozen-Thawed Embryo Transfer Cycles.

Int J Womens Health

January 2025

Reproductive Medicine Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.

Objective: The aim of this study was to investigate the emotional experience of patients with thin endometrium (TE) who have repeatedly cancelled their cycles due to unsuitability for embryo implantation during the endometrial preparation phase of freeze-thaw embryo transfer (FET). The overall aim is to improve management strategies and quality of life for these patients.

Methods: A descriptive phenomenological methodology was utilized to conduct in-depth, semi-structured interviews with ten patients diagnosed with TE who had experienced repeated FET cancellations between January and June 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!