Structured Waters Mediate Small Molecule Binding to G-Quadruplex Nucleic Acids.

Pharmaceuticals (Basel)

The School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.

Published: December 2021

The role of G-quadruplexes in human cancers is increasingly well-defined. Accordingly, G-quadruplexes can be suitable drug targets and many small molecules have been identified to date as G-quadruplex binders, some using computer-based design methods and co-crystal structures. The role of bound water molecules in the crystal structures of G-quadruplex-small molecule complexes has been analyzed in this study, focusing on the water arrangements in several G-quadruplex ligand complexes. One is the complex between the tetrasubstituted naphthalene diimide compound MM41 and a human intramolecular telomeric DNA G-quadruplex, and the others are in substituted acridine bimolecular G-quadruplex complexes. Bridging water molecules form most of the hydrogen-bond contacts between ligands and DNA in the parallel G-quadruplex structures examined here. Clusters of structured water molecules play essential roles in mediating between ligand side chain groups/chromophore core and G-quadruplex. These clusters tend to be conserved between complex and native G-quadruplex structures, suggesting that they more generally serve as platforms for ligand binding, and should be taken into account in docking and in silico studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781208PMC
http://dx.doi.org/10.3390/ph15010007DOI Listing

Publication Analysis

Top Keywords

water molecules
12
g-quadruplex
8
g-quadruplex structures
8
structured waters
4
waters mediate
4
mediate small
4
small molecule
4
molecule binding
4
binding g-quadruplex
4
g-quadruplex nucleic
4

Similar Publications

Low-iridium acid-stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir-based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade-off.

View Article and Find Full Text PDF

Understanding communication among microorganisms through the array of signal molecules and establishing controlled signal transfer between different species is a major goal of the future of biotechnology, and controlled multispecies bioreactor cultivations will open a wide range of applications. In this study, we used two quorum-sensing peptides from - namely, the competence and sporulation factor (CSF) and (PhrF)-to establish a controlled interkingdom communication system between prokaryotes and eukaryotes. For this purpose, we engineered as a reporter capable of detecting the CSF and PhrF peptides heterologously produced by the yeast .

View Article and Find Full Text PDF

Effects of endophytes on early growth and ascorbate metabolism in .

Front Plant Sci

December 2024

Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States.

Understanding the early interactions between plants and endophytes will contribute to a more systematic approach to enhancing endophyte-mediated effects on plant growth and environmental stress resistance. This study examined very early growth and ascorbate metabolism after seed treatment of with three different endophytes. The three endophytes used were pb1(Bapb1), (Ml) and SLB4 (SLB4).

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

December 2024

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!