Unlabelled: Hemodialysis patients (HDP) and kidney transplant recipients (KTR) have a high risk of infection with SARS-CoV-2 with poor clinical outcomes. Because of this, vaccination of these groups of patients against SARS-CoV-2 is particularly important. However, immune responses may be impaired in immunosuppressed and chronically ill patients. Here, our aim was to compare the efficacy of an mRNA-based vaccine in HDP, KTR, and healthy subjects.
Design: In this prospective observational cohort study, the humoral and cellular response of prevalent 192 HDP, 50 KTR, and 28 healthy controls (HC) was assessed 1, 2, and 6 months after the first immunization with the BNT162b2 mRNA vaccine.
Results: After 6 months, 97.5% of HDP, 37.9% of KTR, and 100% of HC had an antibody response. Median antibody levels were 1539.7 (±3355.8), 178.5 (±369.5), and 2657.8 (±2965.8) AU/mL in HDP, KTR, and HC, respectively ( ≤ 0.05). A SARS-CoV-2 antigen-specific cell response to vaccination was found in 68.8% of HDP, 64.5% of KTR, and 90% of HC.
Conclusion: The humoral response rates to mRNA-based vaccination of HDPs are comparable to HCs, but antibody titers are lower. Furthermore, HDPs have weaker T-cell response to vaccination than HCs. KTRs have very low humoral and antigen-specific cellular response rates and antibody titers, which requires other vaccination strategies in addition to booster vaccination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780885 | PMC |
http://dx.doi.org/10.3390/pathogens11010067 | DOI Listing |
Pathogens
January 2022
Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany.
Cancer cells commonly develop resistance to immunotherapy by loss of antigen expression. Combinatorial treatments that increase levels of the target antigen on the surface of cancer cells have the potential to restore efficacy to immunotherapy. Here, we use our CRISPR interference- and CRISPR activation-based functional genomics platform to systematically identify pathways controlling cell surface expression of the multiple myeloma immunotherapy antigen B-cell maturation antigen (BCMA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!