Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We conducted an experiment to confirm the passability of chironomid larvae () in granular activated carbon (GAC) used in water treatment plants. After injecting larvae at different growth stages (first through fourth instars) into circular columns filled with GAC, the number of individuals and their locations within the GAC columns were recorded after 168 h. We found that more than 80% of the injected larvae in the first instar and 3.3% in the second instar passed, whereas none from the third and fourth instars had passed through the column. The second instar larvae were evenly distributed within the column, whereas the third and fourth instar larvae were mostly distributed within 10 cm of the upper layer of the GAC. Our results demonstrate the passability of chironomid larvae in GAC and can be used as basic information for water quality management in water treatment plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775576 | PMC |
http://dx.doi.org/10.3390/ijerph19021005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!