Metabolic Obesity in People with Normal Body Weight (MONW)-Review of Diagnostic Criteria.

Int J Environ Res Public Health

Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland.

Published: January 2022

Disorders of metabolic obesity with normal body weight (MONW) are widely recognized risk factors for the development of cardiovascular diseases and type 2 diabetes. Despite this, MONW is not diagnosed in clinical practice. There is no consensus on the definition of MONW, and measuring the degree of insulin resistance or obesity among apparently healthy, non-obese patients is not widely applicable. The awareness of the relationship between metabolic disorders such as MONW and a higher risk of mortality from cardiovascular causes and other related diseases prompts the need for action to be taken aimed at creating appropriate diagnostic models that will allow for the effective detection of those with metabolic abnormalities among people with normal body weight. Such actions are decisive in the prevention and treatment of diseases. Therefore, the purpose of this article is to review the MONW diagnostic criteria used over the years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776153PMC
http://dx.doi.org/10.3390/ijerph19020624DOI Listing

Publication Analysis

Top Keywords

normal body
12
body weight
12
metabolic obesity
8
people normal
8
diagnostic criteria
8
cardiovascular diseases
8
monw
5
metabolic
4
obesity people
4
weight monw-review
4

Similar Publications

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

A multicenter study of neurofibromatosis type 1 utilizing deep learning for whole body tumor identification.

NPJ Digit Med

January 2025

Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.

Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.

View Article and Find Full Text PDF

Background: Obesity is a risk factor for heart failure (HF) development but is associated with a lower incidence of mortality in HF patients. This obesity paradox may be confounded by unrecognized comorbidities, including cachexia.

Methods: A retrospective assessment was conducted using data from a prospectively recruiting multicenter registry, which included consecutive acute heart failure patients.

View Article and Find Full Text PDF

Circadian Rhythm, Hypoxia, and Cellular Senescence: From Molecular Mechanisms to Targeted Strategies.

Eur J Pharmacol

January 2025

College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:

Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effects of different cold acclimation strategies on exercise performance in male mice exposed to low-temperature environments.

Methods: Male mice were subjected to five distinct acclimation regimens over 8 weeks: immersion at 10 °C (10 °CI) or 20 °C (20 °CI), swimming at 10 °C (10 °CS), 20 °C (20 °CS), or 34 °C (34 °CS). During the first 2 weeks, the acclimation time progressively decreased from 30 min to 3 min per day, and the water temperatures were lowered from 34 °C to the target levels, followed by 6 weeks of consistent exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!