Improving the Performance of BaMnO Perovskite as Soot Oxidation Catalyst Using Carbon Black during Sol-Gel Synthesis.

Nanomaterials (Basel)

Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, Universidad de Alicante San Vicente del Raspeig, 03690 Alicante, Spain.

Published: January 2022

A series of BaMnO solids (BM-CX) were prepared by a modified sol-gel method in which a carbon black (VULCAN XC-72R), and different calcination temperatures (600-850 °C) were used. The fresh and used catalysts were characterized by ICP-OES, XRD, XPS, FESEM, TEM, OTPD and H TPR-. The characterization results indicate that the use of low calcination temperatures in the presence of carbon black allows decreasing the sintering effects and achieving some improvements regarding BM reference catalyst: (i) smaller average crystal and particles size, (ii) a slight increase in the BET surface area, (iii) a decrease in the macropores diameter range and, (iv) a lower temperature for the reduction of manganese. The hydrogen consumption confirms Mn(III) and Mn(IV) are presented in the samples, Mn(III) being the main oxidation state. The BM-CX catalysts series shows an improved catalytic performance regarding BM reference catalyst for oxidation processes (NO to NO and NO-assisted soot oxidation), promoting higher stability and higher CO selectivity. BM-C700 shows the best catalytic performance, i.e., the highest thermal stability and a high initial soot oxidation rate, which decreases the accumulation of soot during the soot oxidation and, consequently, minimizes the catalyst deactivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781672PMC
http://dx.doi.org/10.3390/nano12020219DOI Listing

Publication Analysis

Top Keywords

soot oxidation
16
carbon black
12
calcination temperatures
8
reference catalyst
8
catalytic performance
8
oxidation
6
soot
5
improving performance
4
performance bamno
4
bamno perovskite
4

Similar Publications

Potential of CoMnO spinel as soot oxidation catalyst and its kinetics thereof.

Sci Rep

January 2025

Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India.

Efficient catalysts for soot oxidation are critical for mitigating environmental pollution. In this study, CoMnO spinel catalysts were synthesised using reverse co-precipitation and co-precipitation methods to evaluate their performance in soot oxidation and kinetic behaviour. All samples exhibited a tetragonal phase (XRD) and spherical morphology with rough surfaces (SEM).

View Article and Find Full Text PDF

Preventive maintenance in urban public transport: the role of engine oil analysis.

Sci Rep

December 2024

Department of Power Engineering and Transportation, University of Life Sciences in Lublin, Gleboka 28, 20-612, Lublin, Poland.

Engine oil is a valuable source of information on the technical condition of the drive unit. Under the influence of many factors, including operating conditions, time, high temperature, and various types of contamination, the oil gradually degrades, which can result in serious engine damage. The subject of the article focuses on an attempt to answer the questions of how engine failure affects the degradation of engine oil and whether we can use this knowledge to detect potential problems in public transport vehicles at an early stage.

View Article and Find Full Text PDF

Absence of a Causal Link between Elemental Carbon Exposure and Short-Term Respiratory Toxicity in Human-Derived Organoids and Cellular Models.

Environ Sci Technol

December 2024

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

Black carbon or elemental carbon (EC) in the atmosphere plays an ambiguous role in acute respiratory toxic effects. Here, we evaluate the contribution of EC to the short-term toxicity (including cytotoxicity and oxidative stress potency) of fine particulate matter (PM) on the human respiratory tract using in vitro airway organoids and cell lines. The toxic potency of EC per unit mass, including char and soot, is more than 2 orders of magnitude lower than that of polycyclic aromatic hydrocarbons (PAHs), which are coemitted from incomplete combustion.

View Article and Find Full Text PDF

Enhanced oxidative potential and SO heterogeneous oxidation on candle soot after photochemical aging: Influencing mechanisms of different irradiation wavelengths.

Environ Pollut

December 2024

School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Jiangsu, 213164, China. Electronic address:

Photochemistry plays a significant role in the atmospheric aging processes of soot. However, the physicochemical properties and changes in environmental and health effects of soot particles from sacrificial sources after photochemical aging remain unclear. The reaction mechanisms of soot under different irradiation wavelengths require further investigation.

View Article and Find Full Text PDF

Nano-AlO derived from recyclable sources emerges as a promising sustainable solution for enhancing diesel engine efficiency while mitigating emissions. However, a lack of an in-depth understanding of the health hazard aspect still challenges its commercial applications. To this end, nano-AlO/diesel (NAD) blends prepared via ultrasonic homogenization were experimentally and analytically investigated under various injection timings and excess air coefficients to explore the potential of nano-AlO for balancing energy performance and emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!