Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction resulting from a systemic inflammatory response to infection, but the mechanism remains unclear. The mitochondrial permeability transition pore (MPTP) could play a central role in the neuronal dysfunction, induction of apoptosis, and cell death in SAE. The mitochondrial isomerase cyclophilin D (CypD) is known to control the sensitivity of MPTP induction. We, therefore, established a cecal ligation and puncture (CLP) model, which is the gold standard in sepsis research, using CypD knockout (CypD KO) mice, and analyzed the disease phenotype and the possible molecular mechanism of SAE through metabolomic analyses of brain tissue. A comparison of adult, male wild-type, and CypD KO mice demonstrated statistically significant differences in body temperature, mortality, and histological changes. In the metabolomic analysis, the main finding was the maintenance of reduced glutathione (GSH) levels and the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio in the KO animals following CLP. In conclusion, we demonstrate that CypD is implicated in the pathogenesis of SAE, possibly related to the inhibition of MPTP induction and, as a consequence, the decreased production of ROS and other free radicals, thereby protecting mitochondrial and cellular function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779771PMC
http://dx.doi.org/10.3390/ijms23020961DOI Listing

Publication Analysis

Top Keywords

mptp induction
8
cypd mice
8
cypd
5
disease outcome
4
outcome brain
4
brain metabolomics
4
metabolomics cyclophilin-d
4
cyclophilin-d knockout
4
knockout mice
4
mice sepsis
4

Similar Publications

Inorganic polyphosphate (polyP) is a polymer that consists of a series of orthophosphates connected by high-energy phosphoanhydride bonds, like those found in ATP. In mammalian mitochondria, polyP has been linked to the activation of the mitochondrial permeability transition pore (mPTP). However, the details of this process are not completely understood.

View Article and Find Full Text PDF

Dynamin-Related Protein 1 Orchestrates Inflammatory Responses in Periodontal Macrophages via Interaction With Hexokinase 1.

J Clin Periodontol

January 2025

Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.

Aim: To explore the potential roles of mitochondrial dysfunction in the initiation of inflammation in periodontal macrophages and to determine the mechanism underlying the involvement of dynamin-related protein 1 (Drp1) in macrophage inflammatory responses through its interaction with hexokinase 1 (HK1).

Materials And Methods: Gingival tissues were collected from patients diagnosed with periodontitis or from healthy volunteers. Drp1 tetramer formation and phosphorylation were analysed using western blot.

View Article and Find Full Text PDF

Programmed cell death (apoptosis) is essential part of the process of tissue regeneration that also plays role in the mechanism of pathology. The phenomenon of fast and transient permeability of mitochondrial membranes by various triggers, known as permeability transition pore (mPTP) leads to the release of proapoptotic proteins and acts as an initial step in initiation of apoptosis. However, a role for mPTP was also suggested for physiology and it is unclear if there is a threshold in number of mitochondria with mPTP which induces cell death and how this mechanism is regulated in different tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates that SARS-CoV-2 infection can increase the risk of developing parkinsonian symptoms when combined with the mitochondrial toxin MPTP, particularly in genetically modified mice expressing human ACE2 receptors.
  • The study found that while both mRNA and protein-based vaccines can mitigate neurodegeneration in wild-type (WT) mice, only the protein-based vaccine was effective in protecting G2019S LRRK2 mutant mice from SARS-CoV-2 related neurological damage.
  • Overall, the findings emphasize how environmental toxins and genetic predisposition contribute to the development of neurological diseases after viral infections, as well as the potential protective effects of vaccines.
View Article and Find Full Text PDF

Flashes of superoxide anion (O) in mitochondria are generated spontaneously or during the opening of the permeability transition pore (mPTP) and a sudden change in the metabolic state of a cell. Under certain conditions, O can leave the mitochondrial matrix and perform signaling functions beyond mitochondria. In this work, we studied the kinetics of the release of O and HO from isolated mitochondria upon mPTP opening and the modulation of the metabolic state of mitochondria by the substrates of respiration and oxidative phosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!