Rice, the main staple food for about half of the world's population, has had the growth of its production stagnate in the last two decades. One of the ways to further improve rice production is to enhance the associations between rice plants and the microbiome that exists around, on, and inside the plant. This article reviews recent developments in understanding how microorganisms exert positive influences on plant growth, production, and health, focusing particularly on rice. A variety of microbial species and taxa reside in the rhizosphere and the phyllosphere of plants and also have multiple roles as symbiotic endophytes while living within plant tissues and even cells. They alter the morphology of host plants, enhance their growth, health, and yield, and reduce their vulnerability to biotic and abiotic stresses. The findings of both agronomic and molecular analysis show ways in which microorganisms regulate the growth, physiological traits, and molecular signaling within rice plants. However, many significant scientific questions remain to be resolved. Advancements in high-throughput multi-omics technologies can be used to elucidate mechanisms involved in microbial-rice plant associations. Prospectively, the use of microbial inoculants and associated approaches offers some new, cost-effective, and more eco-friendly practices for increasing rice production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775878PMC
http://dx.doi.org/10.3390/ijms23020737DOI Listing

Publication Analysis

Top Keywords

rice production
12
growth production
8
rice plants
8
rice
7
production
5
microbial contributions
4
contributions rice
4
production conventional
4
conventional crop
4
crop management
4

Similar Publications

The tiller angle, one of the critical factors that determine the rice plant type, is closely related to rice yield. An appropriate rice tiller angle can improve rice photosynthetic efficiency and increase yields. In this study, we identified a transcription factor, TILLRE ANGLE CONTROL 8 (TAC8), that is highly expressed in the rice tiller base and positively regulates the tiller angle by regulating cell length and endogenous auxin content; TAC8 encodes a TEOSINTE BRANCHED1/CYCLOIDEA/PCF transcriptional activator that is highly expressed in the nucleus.

View Article and Find Full Text PDF

Electrochemical Removal of Se(IV) from Wastewater Using RuO-Based Catalysts.

Nano Lett

January 2025

Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States.

The removal of selenite (SeO) from water is challenging due to the risk of secondary pollutants. To address this, we developed RuO-based nanocatalysts on the titanium plate (RuO/TP) for direct electrochemical reduction of Se(IV) to elemental selenium [Se(0)]. Optimizing Sn doping in RuO nanoparticles to induce charge redistribution enabled the RuSnO/TP catalyst to achieve ∼90% Se(IV) removal across concentrations of 0.

View Article and Find Full Text PDF

Rice, a globally important staple, requires effective preservation methods to maintain its quality during extended storage. This study explored the efficacy of nitrogen-controlled atmosphere (NCA) storage in preserving the quality of brown rice during a one-year period using UHPLC-MS/MS based lipidomic profiling. A total of 1013 lipids were identified and categorized into five main groups.

View Article and Find Full Text PDF

Environmental impact analysis of crop residue burning in Madhya Pradesh: A multivariate comparison across key crops.

Environ Monit Assess

January 2025

Department of Agricultural Economics, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala, India.

This study quantified the environmental impacts of residue burning of major produced and burned crops in Madhya Pradesh, central India. The environmental impacts were quantified using Life Cycle Assessment (LCA) coupled with Monte Carlo simulation of 1000 iterations. Crop wise marginal impacts of the crops have been quantified using Multivariate regression model.

View Article and Find Full Text PDF

Background: The Food and Drug Administration's Closer to Zero Action Plan aims to reduce toxic element exposure from foods infants and toddlers eat. Rice has been identified as a source of inorganic arsenic in the diets of infants and toddlers.

Objective: Evaluate consumption of rice and rice-containing foods from the Feeding Infants and Toddlers Study (FITS) 2016.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!