Ionizing Radiation Activates Mitochondrial Function in Osteoclasts and Causes Bone Loss in Young Adult Male Mice.

Int J Mol Sci

Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.

Published: January 2022

The damaging effects of ionizing radiation (IR) on bone mass are well-documented in mice and humans and are most likely due to increased osteoclast number and function. However, the mechanisms leading to inappropriate increases in osteoclastic bone resorption are only partially understood. Here, we show that exposure to multiple fractions of low-doses (10 fractions of 0.4 Gy total body irradiation [TBI]/week, i.e., fractionated exposure) and/or a single exposure to the same total dose of 4 Gy TBI causes a decrease in trabecular, but not cortical, bone mass in young adult male mice. This damaging effect was associated with highly activated bone resorption. Both osteoclast differentiation and maturation increased in cultures of bone marrow-derived macrophages from mice exposed to either fractionated or singular TBI. IR also increased the expression and enzymatic activity of mitochondrial deacetylase Sirtuin-3 (Sirt3)-an essential protein for osteoclast mitochondrial activity and bone resorption in the development of osteoporosis. Osteoclast progenitors lacking Sirt3 exposed to IR exhibited impaired resorptive activity. Taken together, targeting impairment of osteoclast mitochondrial activity could be a novel therapeutic strategy for IR-induced bone loss, and Sirt3 is likely a major mediator of this effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775597PMC
http://dx.doi.org/10.3390/ijms23020675DOI Listing

Publication Analysis

Top Keywords

bone resorption
12
ionizing radiation
8
bone
8
bone loss
8
young adult
8
adult male
8
male mice
8
mice damaging
8
bone mass
8
osteoclast mitochondrial
8

Similar Publications

Tooth movement is a complex process involving the vascularization of the tissues, remodeling of the bone cells, and periodontal ligament fibroblasts under the hormonal and neuronal regulation mechanisms in response to mechanical force application. Therefore, it will inevitably impact periodontal tissues. Prolonged treatment can lead to adverse effects on teeth and periodontal tissues, prompting the development of various methods to reduce the length of orthodontic treatment.

View Article and Find Full Text PDF

Introduction: is a medicinal plant that produces silymarin, which has been demonstrated to possess antiviral, anti-neurodegenerative, and anticancer activities. Silybin (A+B) are two major hepatoprotective flavonolignans produced predominantly in fruits. Several attempts have been made to increase the synthesis of silymarin, or its primary components, silybin (A+B).

View Article and Find Full Text PDF

Diffuse sclerosing osteomyelitis (DSO) is a non-bacterial disease of the jawbone, characterized by intermittent pain, swelling, and a mixture of osteosclerosis and osteolysis on radiographs. Its etiology remains unclear, and a standard treatment, based on clear diagnostic criteria, has not been established. We present the case of a 48-year-old male patient, who was initially diagnosed with chronic mandibular osteomyelitis due to apical periodontitis in the right lower second premolar, and underwent antimicrobial medication and surgical therapy based on computed tomography (CT), magnetic resonance imaging (MRI), and bone scintigraphy.

View Article and Find Full Text PDF

Study of an arginine- and tryptophan-rich antimicrobial peptide in peri-implantitis.

Front Bioeng Biotechnol

January 2025

Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China.

The combination of hydrophilic arginine residues and hydrophobic tryptophan residues is considered to be the first choice for designing short-chain antimicrobial peptides (AMPs) due to their potent antibacterial activity. Based on this, we designed an arginine- and tryptophan-rich short peptide, VR-12. Peri-implantitis is a significant microbial inflammatory disorder characterized by the inflammation of the soft tissues surrounding an implant, which ultimately leads to the progressive resorption of the alveolar bone.

View Article and Find Full Text PDF

The IL-17 level in gingival crevicular fluid as an indicator of orthodontically induced inflammatory root resorption.

J Orofac Orthop

January 2025

Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Department of Orthodontics, College and Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, 530021, Nanning, Guangxi, China.

Purpose: Interleukin (IL)-17 expression in the periodontal ligament is associated with orthodontically induced inflammatory root resorption (OIIRR). Seeking a convenient, rapid, and non-invasive IL-17 detection approach could help predict OIIRR. In this study, we assessed the potential of the IL-17 level in gingival crevicular fluid (GCF) to be an indicator of OIIRR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!