Cationic organic pollutants (dyes and pesticides) are mainly hydrosoluble and easily contaminate water and create a serious problem for biotic and abiotic species. The elimination of these dangerous contaminants from water was accomplished by adsorption using cyclodextrin nanosponges. These nanosponges were elaborated by the cross-linking between 1,2,3,4-butanetetracarboxylic acid and β-cyclodextrin in the presence of poly(vinyl alcohol). Their physicochemical characteristics were characterized by gravimetry, acid-base titration, TGA, C NMR, ATR-FTIR, Raman, X-ray diffraction, and Stereomicroscopy. The BP5 nanosponges displayed 68.4% yield, 3.31 mmol/g COOH groups, 0.16 mmol/g β-CD content, 54.2% swelling, 97.0% PQ removal, 96.7% SO removal, and 98.3% MG removal for 25 mg/L of initial concentration. The pseudo-second-order model was suitable for kinetics using 180 min of contact time. Langmuir isotherm was suitable for isotherm with the maximum adsorption of 120.5, 92.6, and 64.9 mg/g for paraquat (PQ), safranin (SO), and malachite green (MG) adsorption, respectively. Finally, the reusability performance after five regeneration times reached 94.1%, 91.6%, and 94.6% for PQ, SO, and MG adsorption, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778113PMC
http://dx.doi.org/10.3390/polym14020342DOI Listing

Publication Analysis

Top Keywords

cyclodextrin nanosponges
8
1234-butanetetracarboxylic acid
8
polyvinyl alcohol
8
adsorption
5
adsorption cationic
4
cationic contaminants
4
contaminants cyclodextrin
4
nanosponges
4
nanosponges cross-linked
4
cross-linked 1234-butanetetracarboxylic
4

Similar Publications

Psoriatic arthritis (PsA), a chronic inflammatory disease, mainly affects the joints, with approximately 30% of psoriasis patients eventually developing PsA. Characterized by both innate and adaptive immune responses, PsA poses significant challenges for effective treatment. Recent advances in drug delivery systems have sparked interest in developing novel formulations to improve therapeutic outcomes.

View Article and Find Full Text PDF

The cellular components of the tumor microenvironment (TME) comprise cancer cells and nonmalignant cells including stromal and immune cells. Exosomes are extracellular vesicles secreted by various types of cells that play a crucial role in intercellular communications within TME. The main goal of this study was to elucidate how exosomes of macrophage cells treated with doxorubicin (DOX) and DOX-loaded cyclodextrin-based nanosponges (DOX-CDNSs), affect melanoma cancer cell proliferation.

View Article and Find Full Text PDF

Curcumin (CUR) is highly promising for topical therapeutic applications, but water-insolubility is one of the major challenges plaguing its drugability, while conventional lipid nanocarriers are limited by low drug-carrying capacity, many additives, and complex processes. In the current work, we constructed a composite carrier integrated with cyclodextrin metal-organic framework (γ-CD-MOF) and cyclodextrin nanosponge (β-CDNS), in which the γ-CD-MOF had 13.9 % drug loading and 267.

View Article and Find Full Text PDF

To expand the utility of cyclodextrin nanosponges for catalytic purpose, β-cyclodextrin nanosponge was prepared via melting method and then utilized as a catalyst support for the stabilization of sulphated zirconia The resulting catalyst, denoted as CDNS-SO/ZrO, was then applied as a heterogeneous acidic catalyst for conversion of fructose to 5-hydroxymethylfurfural. The results, underpinned that the catalytic activity of CDNS-SO/ZrO, was superior to that of ZrO and SO/ZrO, confirming the role of sulfonation of ZrO and immobilization of SO/ZrO on CDNS in catalysis. To optimize the reaction parameters and achieve maximum yield of the desired product, Response Surface Method that is an accurate procedure for appraising the impacts of the reaction variables was employed and it was found that using 35 wt% CDNS-SO/ZrO at 80 °C, HMF in 93 % yield was achieved in 45 min.

View Article and Find Full Text PDF

Synthesis, (bio)degradation, and utilization of starch-derived biopolymers in defined hard waters.

Carbohydr Polym

February 2025

Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università degli Studi di Torino, Via P. Giuria 7, 10125 Turin, Italy.

Climate change is causing a change in local rainfall, which generally brings with it a reduction in rainfall and, consequently, an increase in water hardness. This study explores the suitability and stability of various dextrin-derived polymers for cation removal in simulated hard water conditions. Thermal analysis and Fourier-transform infrared spectroscopy confirm the polymers' thermal stability and proper formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!