To eliminate imidacloprid insecticide from wastewater, nanocalcite was grafted onto the surface of pretreated polyester fabric. The process of seeding was followed by the low temperature hydrothermal method for the growth of nanocalcite for the functionalization of fabric. The goal of this study was to improve the hydrophilicity of the nanocalcite photocatalyst that had been grafted onto the surface of polyester fabric (PF) using acidic and basic prewetting techniques. The morphological characteristics, crystalline nature, surface charge density, functional groups of surface-modified nanocalcite @ PF were determined via SEM, XRD, FTIR, and Zeta potential (ZP), respectively. Characterization results critically disclosed surface roughness due to excessive induction of hydroxyl groups, rhombohedral crystal structure, and high charge density (0.721 mS/cm). Moreover, contact angle of nanocalcite @ PF was calculated to be 137.54° while after acidic and basic prewetting, it was reduced to 87.17° and 48.19°. Similarly, bandgap of the as fabricated nanocalcite was found to be 3.5 eV, while basic prewetted PF showed a reduction in band gap (2.9 eV). The solar photocatalytic mineralization of imidacloprid as a probe pollutant was used to assess the improvement in photocatalytic activity of nanocalcite @ PF after prewetting. Response surface methodology was used to statistically optimize the solar exposure time, concentration of the oxidant, and initial pH of the reaction mixture. Maximum solar photocatalytic degradation of the imidacloprid was achieved by basic prewetted nanocalcite @ PF (up to 91.49%), which was superior to acidic prewetted fabric and as-fabricated nanocalcite @ PF. Furthermore, HPLC and FTIR findings further indicated that imidacloprid was decomposed vastly to harmless species by basic prewetted nanocalcite @ PF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777986PMC
http://dx.doi.org/10.3390/polym14020295DOI Listing

Publication Analysis

Top Keywords

polyester fabric
12
basic prewetted
12
nanocalcite
11
photocatalytic activity
8
activity nanocalcite
8
grafted surface
8
acidic basic
8
basic prewetting
8
charge density
8
solar photocatalytic
8

Similar Publications

Babassu (Atallea sp.), a native palm tree from South America's Amazon produces bio-oil and biochar with significant potential for industrial applications. Babassu oil as a bio-based plasticizer is reported here for the first time to replace petrochemical alternatives in the production of conductive filaments for additive manufacturing purposes.

View Article and Find Full Text PDF

Microfibres released from textiles are one of the most common types of microplastics (MPs) found in the environment. Whether they are synthetic or natural, they can undergo degradation in different environmental matrices. This may result in the leaching of a variety of chemicals, mainly textile dyes and additives of high toxicity that need to be regulated.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how incorporating cotton and polyester fibers into polypropylene (PP) composites can improve their mechanical, thermal, and rheological properties, aiming for durable materials.
  • The research finds that a balanced mix of cotton and polyester fibers maximizes tensile strength and stiffness, with different coupling agents influencing fiber-matrix adhesion and overall performance.
  • The use of recycled textile fibers not only bolsters thermal resistance and structural stability but also presents a sustainable solution that supports the circular economy by repurposing textile waste in composite manufacturing.
View Article and Find Full Text PDF

Integrating electrospun aligned fiber scaffolds with bovine serum albumin-basic fibroblast growth factor nanoparticles to promote tendon regeneration.

J Nanobiotechnology

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.

Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.

Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.

View Article and Find Full Text PDF

Pore-Controllable Synthesis of Phthalic Acid-Derived Hierarchical Activated Carbon for Dilute CO Capture.

Inorg Chem

December 2024

Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.

Carbon capture and storage (CCS) from dilute sources is an important strategy for stabilizing the concentration of atmospheric carbon dioxide and global temperature. However, the adsorption process is extremely challenging due to the sluggish diffusion rate of dilute CO. Herein, -phthalic acid (PTA)-derived hierarchical porous activated carbon (PTA-C) with abundant micro- and mesopores was successfully prepared for dilute CO (2 vol %) capture at ambient conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!