Phosphorus Recovery by Adsorption from the Membrane Permeate of an Anaerobic Membrane Bioreactor Digesting Waste-Activated Sludge.

Membranes (Basel)

Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo 060-8628, Japan.

Published: January 2022

The recovery of phosphorus (P) from waste activated sludge (WAS) is a promising approach for sustainable resource management. During the anaerobic digestion of WAS, orthophosphate is released, and this P species is favorable for adsorption recovery. In the present study, an anerobic membrane bioreactor (AnMBR) with a P-adsorption column was developed to generate biogas from WAS and to recover P from membrane permeate simultaneously. The effects of the hydraulic retention time (HRT) and solid retention time (SRT) of the AnMBR on P solubilization were investigated. As a result, the maximum P solubilization was 21% when the HRT and SRT were 45 days and 100 days, respectively. Orthophosphate in the membrane permeate was adsorbed and recovered using a mesoporous material called zirconium sulfate-surfactant micelle mesostructure (ZS) in the column. The adsorbed P could be desorbed from the ZS with a NaOH solution, and P was recovered as a concentrated solution by a factor of 25. When the HRT was 19 days, the biogas yield and biogas production rate were 0.26 L/g-VS and 0.123 L/L/d, respectively. The average methane content in the biogas was 80%. The developed membrane-based process may be effective for resource recovery from WAS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778099PMC
http://dx.doi.org/10.3390/membranes12010099DOI Listing

Publication Analysis

Top Keywords

membrane permeate
12
membrane bioreactor
8
retention time
8
membrane
5
phosphorus recovery
4
recovery adsorption
4
adsorption membrane
4
permeate anaerobic
4
anaerobic membrane
4
bioreactor digesting
4

Similar Publications

Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the barrier.

View Article and Find Full Text PDF

Gelonin is a ribosome-inactivating protein with extreme intracellular toxicity but poor permeation into cells. Targeted disruption of cell membranes to facilitate gelonin entry is explored for cancer and tissue ablation. We demonstrate a hundreds- to thousands-fold enhancement of gelonin cytotoxicity by pulsed electric fields in the T24, U-87, and CT26 cell lines.

View Article and Find Full Text PDF

Unlabelled: Gram-negative bacteria play a pivotal role in the bioremediation of persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Because the outer membrane (OM) of these bacteria hinders the direct permeation of hydrophobic substances into the cells, trans-OM proteins are required for the uptake of PAHs. However, neither the characteristics of PAH transporters nor the specific transport mechanism has been well interpreted.

View Article and Find Full Text PDF

Spacer Designs for Improved Hydrodynamics and Filtration Efficiency in Sea Water Reverse Osmosis.

Membranes (Basel)

January 2025

Environmental Science and Engineering Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Reverse osmosis (RO) filtration performance is heavily influenced by the design of the feed spacer. Spacer design impacts hydrodynamic patterns within the system, affecting water production and concentration polarization. Two spacer designs, namely pillar (P) and standard (S), were investigated to improve the performance of a commercially available spacer design (C) in the RO process.

View Article and Find Full Text PDF

The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as FeO, AlO, CaSO, NbO, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!