Alleviation of Ultrafiltration Membrane Fouling by ClO Pre-Oxidation: Fouling Mechanism and Interface Characteristics.

Membranes (Basel)

Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.

Published: January 2022

In order to alleviate membrane fouling and improve removal efficiency, a series of pretreatment technologies were applied to the ultrafiltration process. In this study, ClO was used as a pre-oxidation strategy for the ultrafiltration (UF) process. Humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA) were used as three typical organic model foulants, and the mixture of the three substances was used as a representation of simulated natural water. The dosages of ClO were 0.5, 1, 2, 4, and 8 mg/L, with 90 min pre-oxidation. The results showed that ClO pre-oxidation at low doses (1-2 mg/L) could alleviate the membrane flux decline caused by humus, polysaccharides, and simulated natural water, but had a limited alleviating effect on the irreversible resistance of the membrane. The interfacial free energy analysis showed that the interaction force between the membrane and the simulated natural water was also repulsive after the pre-oxidation, indicating that ClO pre-oxidation was an effective way to alleviate cake layer fouling by reducing the interaction between the foulant and the membrane. In addition, ClO oxidation activated the hidden functional groups in the raw water, resulting in an increase in the fluorescence value of humic analogs, but had a good removal effect on the fluorescence intensity of BSA. Furthermore, the membrane fouling fitting model showed that ClO, at a low dose (1 mg/L), could change the mechanism of membrane fouling induced by simulated natural water from standard blocking and cake layer blocking to critical blocking. Overall, ClO pre-oxidation was an efficient pretreatment strategy for UF membrane fouling alleviation, especially for the fouling control of HA and SA at low dosages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779104PMC
http://dx.doi.org/10.3390/membranes12010078DOI Listing

Publication Analysis

Top Keywords

membrane fouling
20
clo pre-oxidation
20
simulated natural
16
natural water
16
membrane
9
fouling
8
clo
8
alleviate membrane
8
ultrafiltration process
8
cake layer
8

Similar Publications

Facile Preparation of Sulfonated Polysulfone Composite Membranes with High Hydrophilicity and Visible-Light Driving Self-Cleaning Performance.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.

The photo-Fenton reaction can efficiently degrade organic pollutants and thus is applied intensively for clearing out membrane fouling. However, the pollutant removal efficiency is greatly limited by the redox cycle rate of Fe/Fe and the rapid recombination rate of the photogenerated electrons and holes. In order to overcome these drawbacks, a sulfonated polysulfone composite membrane was designed and prepared by incorporating titanium dioxide (TiO) nanoparticles into a sulfonated polysulfone membrane and sequentially forming β-FeOOHs on the membrane surface.

View Article and Find Full Text PDF

The efficiency of ultrafiltration (UF) of acidified skim milk (SM) is impaired by protein aggregation and mineral scaling. The aim of this study is to assess the potential of acidification by electrodialysis with bipolar membranes (EDBM), in comparison with citric acid (CA), prior to the UF process on filtration performance, fouling and composition of the protein concentrates. Electro-acidification, facilitated by a water-splitting reaction, decreased the pH of milk to ∼ 5.

View Article and Find Full Text PDF

In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.

View Article and Find Full Text PDF

Nowadays, there is a growing interest in membrane modification processes to improve their characteristics and the effectiveness of their treatments and reduce the possible fouling. In this sense, in this work, a modification of an ultrafiltration membrane with three different materials has been carried out: reduced graphene oxide (rGO), chitosan and MgCl. For both the native and the modified membranes, a study has been carried out to remove the emerging contaminant sulfamethoxazole (SMX).

View Article and Find Full Text PDF

Peptide therapeutics, a major class of medicines, have achieved remarkable success across diseases such as diabetes and cancer, with landmark examples such as GLP-1 receptor agonists revolutionizing the treatment of type-2 diabetes and obesity. Despite their success, designing peptides that satisfy multiple conflicting objectives, such as target binding affinity, solubility, and membrane permeability, remains a major challenge. Classical drug development and structure-based design are ineffective for such tasks, as they fail to optimize global functional properties critical for therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!