The recovery of osmium from residual osmium tetroxide (OsO) is a necessity imposed by its high toxicity, but also by the technical-economic value of metallic osmium. An elegant and extremely useful method is the recovery of osmium as a membrane catalytic material, in the form of nanoparticles obtained on a polymeric support. The subject of the present study is the realization of a composite membrane in which the polymeric matrix is the polypropylene hollow fiber, and the active component consists of the osmium nanoparticles obtained by reducing an alcoholic solution of osmium tetroxides directly on the polymeric support. The method of reducing osmium tetroxide on the polymeric support is based on the use of 10-undecenoic acid (10-undecylenic acid) (UDA) as a reducing agent. The osmium tetroxide was solubilized in -butanol and the reducing agent, 10-undecenoic acid (UDA), in -propanol, -butanol or -decanol solution. The membranes containing osmium nanoparticles (Os-NP) were characterized morphologically by the following: scanning electron microscopy (SEM), high-resolution SEM (HR-SEM), structurally: energy-dispersive spectroscopy analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy. In terms of process performance, thermal gravimetric analysis was performed by differential scanning calorimetry (TGA, DSC) and in a redox reaction of an organic marker, -nitrophenol (PNP) to -aminophenol (PAP). The catalytic reduction reaction with sodium tetraborate solution of PNP to PAP yielded a constant catalytic rate between 2.04 × 10 mmol s and 8.05 × 10 mmol s.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781728PMC
http://dx.doi.org/10.3390/membranes12010051DOI Listing

Publication Analysis

Top Keywords

10-undecenoic acid
12
osmium tetroxide
12
polymeric support
12
osmium
10
method recovery
8
recovery osmium
8
osmium nanoparticles
8
acid uda
8
reducing agent
8
osmium recovery
4

Similar Publications

Recent advancements in polymer materials have enabled the synthesis of bio-based monomers from renewable resources, promoting sustainable alternatives to fossil-based materials. This study presents a novel zwitterionic surfactant, SF, derived from 10-undecenoic acid obtained from castor oil through a four-step reaction, achieving a yield of 78%. SF has a critical micelle concentration (CMC) of 1235 mg/L, slightly higher than the commercial anionic surfactant Rhodacal DS-4 (sodium dodecyl benzene sulfonate), and effectively stabilizes monomer droplets, leading to excellent conversion and stable latex formation.

View Article and Find Full Text PDF

In the present manuscript, we highlight the contradictions in the thermally activated processes theory which treats a system's activated state as a state of the phonon subsystem. We offer an alternative model, in which the activated state is treated as an electron subsystem state. The mechanism of the activated state formation is as follows: thermal fluctuations excite electrons of some particles within the activation zone.

View Article and Find Full Text PDF

Update to RIFM fragrance ingredient safety assessment, 10-undecenoic acid, heptyl ester, CAS registry number 68141-27-5.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF
Article Synopsis
  • Controlling biofilm formation on dentures made from PMMA is crucial due to the biofilm's resistance to antifungal drugs.
  • The study explores the combination of two natural compounds, undecylenic acid (UDA) and farnesol (FAR), which may work together synergistically to prevent biofilm formation on PMMA.
  • The modified PMMA composites showed a decrease in biofilm and planktonic cell metabolic activity, indicating that UDA and FAR could be effective in reducing biofilm growth on dentures.
View Article and Find Full Text PDF

Introduction: Topical antifungals for toenail onychomycosis must penetrate the nail to deliver an inhibitory concentration of free drug to the site of infection. In two ex vivo experiments, we tested the ability of topical antifungals to inhibit growth of Trichophyton rubrum and Trichophyton mentagrophytes, the most common causative fungi in toenail onychomycosis.

Methods: Seven topical antifungals were tested: three U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!