Ginsenoside F1, the metabolite of Rg1, is one of the most important constituents of . Although the effects of ginsenosides on amyloid beta (Aβ) aggregation in the brain are known, the role of ginsenoside F1 remains unclear. Here, we investigated the protective effect of ginsenoside F1 against Aβ aggregation in vivo and in vitro. Treatment with 2.5 μM ginsenoside F1 reduced Aβ-induced cytotoxicity by decreasing Aβ aggregation in mouse neuroblastoma neuro-2a (N2a) and human neuroblastoma SH-SY5Y neuronal cell lines. Western blotting, real-time PCR, and siRNA analysis revealed an increased level of insulin-degrading enzyme (IDE) and neprilysin (NEP). Furthermore, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis confirmed that ginsenoside F1 could pass the blood-brain barrier within 2 h after administration. Immunostaining results indicate that ginsenoside F1 reduces Aβ plaques in the hippocampus of APPswe/PSEN1dE9 (APP/PS1) double-transgenic Alzheimer's disease (AD) mice. Consistently, increased levels of IDE and NEP protein and mRNA were observed after the 8-week administration of 10 mg/kg/d ginsenoside F1. These data indicate that ginsenoside F1 is a promising therapeutic candidate for AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779788 | PMC |
http://dx.doi.org/10.3390/life12010058 | DOI Listing |
J Biol Chem
December 2018
From the Department of Biology, Faculty of Science and Engineering and
ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA), ClpB forms a hexameric ring structure, with each protomer containing two AAA modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring.
View Article and Find Full Text PDFBiosci Rep
December 2017
Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, U.S.A.
Front Mol Biosci
February 2017
Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany.
The members of the hexameric AAA+ disaggregase of and , ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis.
View Article and Find Full Text PDFJ Biol Chem
April 2015
From the Department of Biology, Faculty of Science and Engineering and the Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe 658-8501, Japan
FEBS J
July 2011
Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Japan.
ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!