Background: Previous studies have demonstrated that long non-coding RNA maternally expressed gene 3 (MEG3) emerged as a key regulator in development and tumorigenesis. This study aims to investigate the function and mechanism of MEG3 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and explores the use of MEG3 in skull defects bone repairing.
Methods: Endogenous expression of MEG3 during BMSCs osteogenic differentiation was detected by quantitative real-time polymerase chain reaction (qPCR). MEG3 was knockdown in BMSCs by lentiviral transduction. The proliferation, osteogenic-related genes and proteins expression of MEG3 knockdown BMSCs were assessed by Cell Counting Kit-8 (CCK-8) assay, qPCR, alizarin red and alkaline phosphatase staining. Western blot was used to detect β-catenin expression in MEG3 knockdown BMSCs. Dickkopf 1 (DKK1) was used to block wnt/β-catenin pathway. The osteogenic-related genes and proteins expression of MEG3 knockdown BMSCs after wnt/β-catenin inhibition were assessed by qPCR, alizarin red and alkaline phosphatase staining. MEG3 knockdown BMSCs scaffold with PHMG were implanted in a critical-sized skull defects of rat model. Micro-computed tomography(micro-CT), hematoxylin and eosin staining and immunohistochemistry were performed to evaluate the bone repairing.
Results: Endogenous expression of MEG3 was increased during osteogenic differentiation of BMSCs. Downregulation of MEG3 could promote osteogenic differentiation of BMSCs in vitro. Notably, a further mechanism study revealed that MEG3 knockdown could activate Wnt/β-catenin signaling pathway in BMSCs. Wnt/β-catenin inhibition would impair MEG3-induced osteogenic differentiation of BMSCs. By using poly (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBHHx)-mesoporous bioactive glass (PHMG) scaffold with MEG3 knockdown BMSCs, we found that downregulation of MEG3 in BMSCs could accelerate bone repairing in a critical-sized skull defects rat model.
Conclusions: Our study reveals the important role of MEG3 during osteogenic differentiation and bone regeneration. Thus, MEG3 engineered BMSCs may be effective potential therapeutic targets for skull defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781453 | PMC |
http://dx.doi.org/10.3390/jcm11020395 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!