VATS (video assisted thoracoscopic surgery) is routinely and successfully performed in minor and major complex thoracic procedures. This technique has been recently introduced for the treatment of severe forms of idiopathic scoliosis (IS) with the aim to repair the deformity, reduce morbidity and to prevent its progression in patients with skeletal immaturity. This study aims to present VATS in anterior vertebral body tethering (AVBT) approach to support the pediatric orthopedic surgeons during vertebral body fixation. Surgical and anesthesiologic tips and tricks are reported to assure a safe procedure. The study includes preadolescents with IS and a grade of scoliosis >40° that had a high probability of deterioration due to remaining growth (December 2018 to April 2021). Skeletal immaturity of enrolled patients was assessed by Sanders classification and Risser sign. Patients had a Risser score between 0 and 1 and a Sanders score >2 and <5. AVBT technique using VATS was performed by a senior pediatric surgeon assisting the pediatric orthopedic surgeon. Twenty-three patients have been submitted to VATS AVBT in the period of study (age range 9-14 years). The patients had a classified deformity Lenke 1A or B convex right and all types of curves were treated. In all patients, the vertebrae submitted to tethering surgery ranged from D5 to D12; mean curve correction was 43%. Three postoperative complications occurred: one late postoperative bleeding requiring a chest tube positioning on 12th postoperative day; one screw dislodged and needed to be removed; one child showed worsening of the scoliosis and needed a posterior arthrodesis. Initial results of VATS AVBT in growing patients with spinal deformities are encouraging. An appropriate selection of patients and a pediatric dedicated multidisciplinary surgical approach decrease intraoperative complications, time of operation and postoperative sequelae and guarantee an optimal outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774437PMC
http://dx.doi.org/10.3390/children9010074DOI Listing

Publication Analysis

Top Keywords

vertebral body
12
body tethering
8
idiopathic scoliosis
8
tips tricks
8
skeletal immaturity
8
video-assisted thoracoscopy
4
thoracoscopy vertebral
4
tethering juvenile
4
juvenile adolescent
4
adolescent idiopathic
4

Similar Publications

Comparing CT-like bone images based on FRACTURE MR with CT in pediatric congenital vertebral anomalies.

AJNR Am J Neuroradiol

December 2024

From the Department of Radiology (H.N.M., F.B.G.), Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India.

Background And Purpose: Congenital vertebral anomalies are commonly associated with underlying spinal cord anomaly which necessitates imaging both the spinal cord and the bony vertebral column to understand the extent of the deformity better. While MRI is the gold standard for spinal cord imaging, it does not provide CT-like bone details. Many MR bone imaging techniques have been tested in various adult spine conditions in the past decade but not much has been described on their reliability in pediatric spine.

View Article and Find Full Text PDF

In robotic-assisted laminectomy decompression, stable and precise vertebral plate cutting remains challenging due to manual dependency and the absence of adaptive skill-learning mechanisms. This paper presents an advanced robotic vertebral plate-cutting system that leverages patient-specific anatomical variations and replicates the surgeon's cutting technique through a trajectory parameter prediction model. A spatial mapping relationship between artificial and patient vertebrae is first established, enabling the robot to mimic surgeon-defined trajectories with high accuracy.

View Article and Find Full Text PDF

Association of trabecular bone score corrected for tissue thickness with glucose metabolism in acromegaly.

Front Endocrinol (Lausanne)

December 2024

5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.

Introduction: Acromegaly is associated with increased vertebral fracture (VF) risk regardless of bone mineral density (BMD). However, the vertebral trabecular compartment is still low; a possible contributor to this may be impaired glucose metabolism (GM) which frequently complicates acromegaly. Additionally, soft tissue thickness may confound bone imaging in acromegaly patients.

View Article and Find Full Text PDF

Hounsfield unit to serum pentosidine ratio predicts screw loosening after lumbar interbody fusion.

BMC Musculoskelet Disord

December 2024

Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-19-18 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan.

Purpose: This study aimed to identify whether the ratio of the vertebral Hounsfield unit to serum pentosidine (H/P ratio), which reflects bone density and quality, can predict screw loosening after spinal fusion surgery.

Methods: A retrospective case-control study was conducted in 35 patients (mean age 71 ± 10.4 years, 18 men) who underwent spinal interbody fusion for lumbar spine disease between June 2020 and February 2022.

View Article and Find Full Text PDF

Effect of excluding fractured or abnormal vertebrae on the trabecular bone score measurement.

Arch Osteoporos

December 2024

Department of Medical Imaging, Cheng Hsin General Hospital, 45 Cheng Hsin Street, Taipei, 112, Taiwan.

Unlabelled: Brief rationale: The use of L1-L4 vertebrae, without exclusions, has been recommended for trabecular bone score (TBS) measurements.

Main Result: Excluding abnormal and fractured vertebrae affected the TBS. Significance of the paper: Fracture or degenerative abnormality may not affect TBS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!