A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of the Computer-Aided Decision Support System Design on Ultrasound-Based Breast Cancer Classification. | LitMetric

Influence of the Computer-Aided Decision Support System Design on Ultrasound-Based Breast Cancer Classification.

Cancers (Basel)

Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.

Published: January 2022

Automation of medical data analysis is an important topic in modern cancer diagnostics, aiming at robust and reproducible workflows. Therefore, we used a dataset of breast US images (252 malignant and 253 benign cases) to realize and compare different strategies for CAD support in lesion detection and classification. Eight different datasets (including pre-processed and spatially augmented images) were prepared, and machine learning algorithms (i.e., Viola-Jones; YOLOv3) were trained for lesion detection. The radiomics signature (RS) was derived from detection boxes and compared with RS derived from manually obtained segments. Finally, the classification model was established and evaluated concerning accuracy, sensitivity, specificity, and area under the Receiver Operating Characteristic curve. After training on a dataset including logarithmic derivatives of US images, we found that YOLOv3 obtains better results in breast lesion detection (IoU: 0.544 ± 0.081; LE: 0.171 ± 0.009) than the Viola-Jones framework (IoU: 0.399 ± 0.054; LE: 0.096 ± 0.016). Interestingly, our findings show that the classification model trained with RS derived from detection boxes and the model based on the RS derived from a gold standard manual segmentation are comparable (-value = 0.071). Thus, deriving radiomics signatures from the detection box is a promising technique for building a breast lesion classification model, and may reduce the need for the lesion segmentation step in the future design of CAD systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773857PMC
http://dx.doi.org/10.3390/cancers14020277DOI Listing

Publication Analysis

Top Keywords

lesion detection
12
classification model
12
derived detection
8
detection boxes
8
breast lesion
8
detection
6
classification
5
lesion
5
influence computer-aided
4
computer-aided decision
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!