Many nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts. Next, we performed in vitro and in vivo assays, demonstrating that NLGN1 promotes cancer cell invasion and migration along nerves. Because of the established role of the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) in tumor-nerve interactions, we assessed a potential NLGN1-GDNF cooperation. We found that blocking GDNF activity with a specific antibody completely inhibited NLGN1-induced in vitro cancer cell invasion of nerves. Finally, we demonstrated that, in the presence of NLGN1, GDNF markedly activates cofilin, a cytoskeletal regulatory protein, altering filopodia dynamics. In conclusion, our data further prove the existence of a molecular and functional cross-talk between the nervous system and cancer cells. NLGN1 was shown here to function along one of the most represented neurotrophic factors in the nerve microenvironment, possibly opening new therapeutic avenues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774081 | PMC |
http://dx.doi.org/10.3390/cells11020280 | DOI Listing |
Nutrients
December 2024
The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland.
Although physical activity and balanced diet may increase peripheral brain-derived neurotrophic factor (BDNF) concentration, little is known about whether these factors modify BDNF content in physically active individuals and whether the serum fatty acid (FA) profile is related. This study aimed to evaluate quality of diet, identify specific dietary patterns and assess their influence on BDNF and FA levels in serum. It is hypothesized that there is a correlation between diet quality and the concentrations of BDNF and FA in the serum of physically active male individuals.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
: Baroni (HCB) is a traditional herb for the treatment of depression in China. However, the active constituents and the underlying mechanisms of its antidepressant effects remain unclear. The aim of this study was to identify the bioactive constituents of HCB and elucidate its underlying mechanism for the treatment of depression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biomedicine (IBIOMED), University of León, 24071 Leon, Spain.
Alzheimer's disease is one of the most common neurodegenerative diseases, characterized by a wide range of neurological symptoms that begin with personality changes and psychiatric symptoms, progress to mild cognitive impairment, and eventually lead to dementia. Physical exercise is part of the non-pharmacological treatments used in Alzheimer's disease, as it has been shown to delay the neurodegenerative process by improving the redox state in brain tissue, providing anti-inflammatory effects or stimulating the release of the brain-derived neurotrophic factor that enhances the brain structure and cognitive performance. Here, we reviewed the results obtained from studies conducted in both animal models and human subjects to comprehend how physical exercise interventions can exert changes in the molecular mechanisms underlying the pathophysiological processes in Alzheimer's disease: amyloid β-peptide pathology, tau pathology, neuroglial changes, mitochondrial dysfunction, and oxidative stress.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy.
The fibronectin domain-containing protein 5 (FNDC5), or irisin, is an adipo-myokine hormone produced during exercise, which shows therapeutic potential for conditions like metabolic disorders, osteoporosis, sarcopenia, obesity, type 2 diabetes, and neurodegenerative diseases, including Alzheimer's disease (AD). This review explores its potential across various pathophysiological processes that are often considered independent. Elevated in healthy states but reduced in diseases, irisin improves muscle-adipose communication, insulin sensitivity, and metabolic balance by enhancing mitochondrial function and reducing oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!