Extracellular matrix (ECM) in the vascular wall is a highly dynamic structure composed of a set of different molecules such as elastins, collagens, fibronectin (Fn), laminins, proteoglycans, and polysaccharides. ECM undergoes remodeling processes to regulate vascular smooth muscle and endothelial cells' proliferation, differentiation, and adhesion. Abnormalities affecting the ECM can lead to alteration in cellular behavior and from this, this can conduce to the development of pathologies. Metalloproteases play a key role in maintaining the homeostasis of ECM by mediating the cleavage of different ECM components. There are different types of metalloproteases: matrix metalloproteinases (MMPs), disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin motifs (ADAMTSs). ADAMTSs have been found to participate in cardiovascular physiology and diseases and specifically in aortic aneurysms. This review aims to decipher the potential role of ADAMTS proteins in the physiopathologic development of Thoracic Aortic Aneurysms (TAA) and Abdominal Aortic Aneurysms (AAA). This review will focus on what is known on the ADAMTS family involved in human aneurysms from human tissues to mouse models. The recent findings on (encoding ADAMTSL6) mutations in TAA give a new insight on the involvement of the ADAMTS family in TAA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773774 | PMC |
http://dx.doi.org/10.3390/biom12010012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!