To appraise the outcome of file systems and activation of the final irrigant on the push-out bond strength of root fillings in oval canals. Single-rooted mandibular premolars ( = 180) with oval canals were divided into three groups ( = 60) for instrumentation: ProTaper Next (PTN), WaveOne (WO), and Self-adjusting File (SAF). The specimens were further divided into subgroups ( = 20) and subjected to final irrigation with activation by EndoActivator or passive ultrasonic irrigation or without activation. Then, the specimens were again subdivided ( = 10) and obturated with gutta-percha and AH Plus (GP-AH) or C-Point with EndoSequence bioceramic sealer (C-EBC). One-millimeter-thick horizontal slices were cut from the apical third of the root, 5 mm from the apex, and subjected to push-out bond strength (BS) testing. Specimens for which SAF was used exhibited higher BS values than those for which PTN or WO was used ( < 0.05). Activation of the final irrigation did not affect the BS of the root fillings. Root fillings made of C-EBC presented a higher BS than those made of GP-AH ( < 0.05). Adhesive failure was more common with specimens instrumented using PTN and WO. Root canals instrumented with SAF, showed the highest bond strength values for both root filling materials. The C-EBC produced significantly higher bond strength values than those of the GP-AH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773160PMC
http://dx.doi.org/10.3390/biology11010059DOI Listing

Publication Analysis

Top Keywords

bond strength
20
activation final
12
push-out bond
12
root fillings
12
final irrigant
8
oval canals
8
final irrigation
8
irrigation activation
8
strength values
8
root
7

Similar Publications

Why does silicon have an indirect band gap?

Mater Horiz

January 2025

Department of Materials Science, University of Michigan, Ann Arbor, Michigan 48109, USA.

It is difficult to intuit how electronic structure features-such as band gap magnitude, location of band extrema, effective masses, -arise from the underlying crystal chemistry of a material. Here we present a strategy to distill sparse and chemically-interpretable tight-binding models from density functional theory calculations, enabling us to interpret how multiple orbital interactions in a 3D crystal conspire to shape the overall band structure. Applying this process to silicon, we show that its indirect gap arises from a competition between first and second nearest-neighbor bonds-where second nearest-neighbor interactions pull the conduction band down from Γ to X in a cosine shape, but the first nearest-neighbor bonds push the band up near X, resulting in the characteristic dip of the silicon conduction band.

View Article and Find Full Text PDF

The CFH group can act as a hydrogen bond donor, serving as a potential surrogate for OH or SH groups but with a weaker hydrogen bond donation ability. Here, we describe a series of CFH group-containing moieties that facilitate hydrogen bond interactions. We survey hydrogen bond donation ability using several established methods, including H NMR-based hydrogen bond acidity determination, UV-vis spectroscopy titration with Reichardt's dye, and H NMR titration using tri--butylphosphine oxide as a hydrogen bond acceptor.

View Article and Find Full Text PDF

Effect of different root canal irrigation regimes microbubble emulsion (MBE) via riboflavin photosensitizer (RFP), cerium oxide (CeO) nanoparticles (NPs), and Nd: YAP laser on antibacterial efficiency, microhardness (MH), smear layer (SL) removal efficacy, and push-out bond strength (PBS) of AH plus sealer to canal dentin. Sixty single-rooted teeth were selected, disinfected, and categorized into four groups based on the type of disinfection. Following disinfection, a pair of samples were randomly selected and visualized under scanning electron microscope (SEM) for SL evaluation.

View Article and Find Full Text PDF

After cyclo-pentazolate anion, a 5/6 fused structure of N is constructed, and four novel nitrogen-rich ionic compounds are assembled on its basis. The results of the quantum calculations revealed an uneven distribution of electrons on cyclo-N , with significant charge density near the N5/N9 atoms and an ADCH charge of -0.425.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!