Epigenetic Mechanisms as Emerging Therapeutic Targets and Microfluidic Chips Application in Pulmonary Arterial Hypertension.

Biomedicines

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA.

Published: January 2022

Pulmonary arterial hypertension (PAH) is a disease that progress over time and is defined as an increase in pulmonary arterial pressure and pulmonary vascular resistance that frequently leads to right-ventricular (RV) failure and death. Epigenetic modifications comprising DNA methylation, histone remodeling, and noncoding RNAs (ncRNAs) have been established to govern chromatin structure and transcriptional responses in various cell types during disease development. However, dysregulation of these epigenetic mechanisms has not yet been explored in detail in the pathology of pulmonary arterial hypertension and its progression with vascular remodeling and right-heart failure (RHF). Targeting epigenetic regulators including histone methylation, acetylation, or miRNAs offers many possible candidates for drug discovery and will no doubt be a tempting area to explore for PAH therapies. This review focuses on studies in epigenetic mechanisms including the writers, the readers, and the erasers of epigenetic marks and targeting epigenetic regulators or modifiers for treatment of PAH and its complications described as RHF. Data analyses from experimental cell models and animal induced PAH models have demonstrated that significant changes in the expression levels of multiple epigenetics modifiers such as HDMs, HDACs, sirtuins (Sirt1 and Sirt3), and BRD4 correlate strongly with proliferation, apoptosis, inflammation, and fibrosis linked to the pathological vascular remodeling during PAH development. The reversible characteristics of protein methylation and acetylation can be applied for exploring small-molecule modulators such as valproic acid (HDAC inhibitor) or resveratrol (Sirt1 activator) in different preclinical models for treatment of diseases including PAH and RHF. This review also presents to the readers the application of microfluidic devices to study sex differences in PAH pathophysiology, as well as for epigenetic analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773438PMC
http://dx.doi.org/10.3390/biomedicines10010170DOI Listing

Publication Analysis

Top Keywords

pulmonary arterial
16
epigenetic mechanisms
12
arterial hypertension
12
epigenetic
8
vascular remodeling
8
targeting epigenetic
8
epigenetic regulators
8
methylation acetylation
8
pah
7
pulmonary
5

Similar Publications

Limited data exist on cancer screening in carceral facilities. This study evaluates the feasibility and outcomes of a population-based lung cancer screening initiative in a carceral setting. This is a retrospective review of a lung cancer screening event at the Rhode Island Department of Corrections.

View Article and Find Full Text PDF

Background: Hemoptysis, the expectoration of blood from the lower respiratory tract, varies in severity and necessitates effective management to mitigate morbidity. Traditional treatments include bronchial artery embolization and pharmacological approaches. Tranexamic acid (TXA), an antifibrinolytic agent known for its efficacy in reducing bleeding during surgery and trauma, is being explored for its efficacy in treating Hemoptysis via both intravenous and inhalational routes.

View Article and Find Full Text PDF

Iloprost is a synthetic long-acting prostacyclin-analog drug used to treat various vascular diseases. The Federal Drug Administration approved the drug in 2004 for pulmonary arterial hypertension, and it has since been shown to be helpful in other vascular conditions such as scleroderma and Raynaud phenomenon. The Federal Drug Administration has now approved the use of iloprost for severe frostbite.

View Article and Find Full Text PDF

Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review).

Int J Mol Med

March 2025

Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China.

Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca and CVD has been extensively studied. Ca movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis.

View Article and Find Full Text PDF

Pulmonary artery (PA) flow analysis is crucial for understanding the progression of pulmonary hypertension (PH). We hypothesized that PA flow characteristics vary according to PH etiology. In this study, we used 4D flow cardiovascular magnetic resonance imaging (CMR) to compare PA flow velocity and wall shear stress (WSS) between patients with pulmonary arterial hypertension (PAH) and those with heart failure with preserved ejection fraction and pulmonary hypertension (PH-HFpEF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!