Oxidative phosphorylation (OXPHOS) consists of four enzyme complexes and ATP synthase, and is crucial for maintaining physiological tissue and cell growth by supporting the main bioenergy pool. Cytochrome oxidase (COX) has been implicated as a primary regulatory site of OXPHOS. Recently, COX subunit 5B (COX5B) emerged as a potential biomarker associated with unfavorable prognosis by modulating cell behaviors in specific cancer types. However, its molecular mechanism remains unclear, particularly in colorectal cancers (CRCs). To understand the role of COX5B in CRCs, the expression and postoperative outcome associations using independent in-house patient cohorts were evaluated. A higher COX5B tumor/nontumor expression ratio was associated with unfavorable clinical outcomes ( = 0.001 and 0.011 for overall and disease-free survival, respectively. In cell-based experiments, the silencing of COX5B repressed cell growth and enhanced the susceptibility of CRCs cells to anticancer drugs. Finally, downstream effectors identified by RNA sequencing followed by RT-qPCR and functional compensation experiments revealed that the tight junction protein Claudin-2 (CLDN2) acts downstream of COX5B-mediated bioenergetic alterations in controlling cell growth and the sensitivity to anticancer drugs in CRCs cells. In conclusion, it was found that COX5B promoted cell growth and attenuated anticancer drugs susceptibility in CRCs cells by orchestrating CLDN2 expression, which may contribute to unfavorable postoperative outcomes of patients with CRCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772867PMC
http://dx.doi.org/10.3390/biomedicines10010060DOI Listing

Publication Analysis

Top Keywords

cell growth
20
crcs cells
12
anticancer drugs
12
cox5b-mediated bioenergetic
8
bioenergetic alterations
8
colorectal cancers
8
associated unfavorable
8
susceptibility crcs
8
cell
6
crcs
6

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!