AI Article Synopsis

Article Abstract

The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773432PMC
http://dx.doi.org/10.3390/biomedicines10010015DOI Listing

Publication Analysis

Top Keywords

fatty liver
16
liver disease
12
nonalcoholic fatty
8
disease nafld
8
liver
6
disease
5
nafld
5
nafld pathogenesis
4
pathogenesis noninvasive
4
noninvasive diagnosis
4

Similar Publications

To determine the basis for perinatal nutritional mismatch causing metabolic dysfunction associated steatotic liver disease (MASLD) and diabetes mellitus, we examined adult phenotype, hepatic transcriptome, and pancreatic β-islet function. In prenatal caloric restricted rat with intrauterine growth restriction (IUGR) and postnatal exposure to high fat with fructose (HFhf) or high carbohydrate (RC), we investigated male and female IUGR-Hfhf and IUGR-RC, versus HFhf and CON offspring. Males more than females displayed adiposity, glucose intolerance, insulin resistance, hyperlipidemia, hepatomegaly with hepatic steatosis.

View Article and Find Full Text PDF

Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).

View Article and Find Full Text PDF

Skeletal and Adipose Manifestations of Stress in a Contemporary Pediatric Sample.

Am J Biol Anthropol

January 2025

School of Anthropology and Archaeology, The Australian National University, Canberra, Australian Capital Territory, Australia.

Introduction: Adverse experiences leading to physiological disruptions (stress) in early life produce cascade effects on various biological systems, including the endocrine and metabolic systems, which, in turn, shape the developing skeletal system. To evaluate the effects of stress on adipose and skeletal tissues, we examine the relationship between skeletal indicators of stress (porotic hyperostosis [PH] and cribra orbitalia [CO]), bone mineral density (BMD), vertebral neural canal (VNC) diameters, and adipose tissue distribution in a contemporary pediatric autopsy sample.

Methods: Data is from 702 (409 males, 293 females) individuals from a pediatric (0.

View Article and Find Full Text PDF

Objective: To analyze the clinical effectiveness of Entecavir (ETV) and Tenofovir Disoproxil Fumarate (TDF) Tablets for the treatment of chronic hepatitis B (CHB).

Methods: Clinical data from 100 CHB patients admitted to our hospital from April 2022 to April 2024 were retrospectively reviewed. Of these, 45 cases in the control group received ETV, and 55 cases in the research group received TDF tablets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!