AI Article Synopsis

  • S-Nitrosothiol formation in proteins and peptides is linked to various diseases and may regulate protein functions, as well as potentially serve as a storage form for nitric oxide (NO).
  • Despite their importance, there is a lack of clarity regarding how RS-NO is formed and degraded in the body.
  • The recently discovered hydropersulfides (RSSH) interact with RS-NO, leading to its degradation and the release of NO, suggesting RSSH could play a critical role in regulating RS-NO levels and its related physiological functions.

Article Abstract

S-Nitrosothiol (RS-NO) formation in proteins and peptides have been implicated as factors in the etiology of many diseases and as possible regulators of thiol protein function. They have also been proposed as possible storage forms of nitric oxide (NO). However, despite their proposed functions/roles, there appears to be little consensus regarding the physiological mechanisms of RS-NO formation and degradation. Hydropersulfides (RSSH) have recently been discovered as endogenously generated species with unique reactivity. One important reaction of RSSH is with RS-NO, which leads to the degradation of RS-NO as well as the release of NO. Thus, it can be speculated that RSSH can be a factor in the regulation of steady-state RS-NO levels, and therefore may be important in RS-NO (patho)physiology. Moreover, RSSH-mediated NO release from RS-NO may be a possible mechanism allowing RS-NO to serve as a storage form of NO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773330PMC
http://dx.doi.org/10.3390/antiox11010169DOI Listing

Publication Analysis

Top Keywords

rs-no
9
hydropersulfides rssh
8
nitric oxide
8
rs-no formation
8
rssh nitric
4
oxide signaling
4
signaling effects
4
effects s-nitrosothiols
4
s-nitrosothiols rs-no
4
rs-no s-nitrosothiol
4

Similar Publications

Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows.

View Article and Find Full Text PDF
Article Synopsis
  • Sepsis and septic shock are critical health issues linked to high mortality rates, with the inflammatory response playing a major role in organ dysfunction, particularly affecting the cardiovascular system through severe hypotension.* -
  • Nitric oxide (NO) is a pivotal factor in both inflammation and cardiovascular issues during sepsis, influencing proteins through post-translational modifications, and DTNB is utilized to study these interactions by targeting reactive thiol groups in proteins.* -
  • In experiments with sepsis-induced mice, DTNB treatment reduced lung vascular leakage, lowered nitrite/nitrate levels, and diminished inflammatory markers like IL-1ß, suggesting its potential benefits in managing sepsis-induced inflammation.*
View Article and Find Full Text PDF

Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations.

View Article and Find Full Text PDF

Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid . Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band.

View Article and Find Full Text PDF

Smartphone pupillometry for detection of cerebral vasospasm after aneurysmal subarachnoid hemorrhage.

J Stroke Cerebrovasc Dis

October 2024

Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Department of Radiology, University of Washington, Seattle, WA, United States; Department of Mechanical Engineering, University of Washington, Seattle, WA, United States; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, United States; Department of Neurology, University of Washington, Seattle, WA, United States. Electronic address:

Objectives: Vasospasm is a complication of aneurysmal subarachnoid hemorrhage (aSAH) that can change the trajectory of recovery and is associated with morbidity and mortality. Earlier detection of vasospasm could improve patient outcomes. Our objective is to evaluate the accuracy of smartphone-based quantitative pupillometry in the detection of radiographic vasospasm and delayed cerebral ischemia (DCI) after aSAH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!