S-Nitrosothiol (RS-NO) formation in proteins and peptides have been implicated as factors in the etiology of many diseases and as possible regulators of thiol protein function. They have also been proposed as possible storage forms of nitric oxide (NO). However, despite their proposed functions/roles, there appears to be little consensus regarding the physiological mechanisms of RS-NO formation and degradation. Hydropersulfides (RSSH) have recently been discovered as endogenously generated species with unique reactivity. One important reaction of RSSH is with RS-NO, which leads to the degradation of RS-NO as well as the release of NO. Thus, it can be speculated that RSSH can be a factor in the regulation of steady-state RS-NO levels, and therefore may be important in RS-NO (patho)physiology. Moreover, RSSH-mediated NO release from RS-NO may be a possible mechanism allowing RS-NO to serve as a storage form of NO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773330 | PMC |
http://dx.doi.org/10.3390/antiox11010169 | DOI Listing |
Elife
January 2025
Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows.
View Article and Find Full Text PDFNitric Oxide
December 2024
Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil. Electronic address:
Elife
November 2024
Department of Physiology and Biophysics, University of Washington, Seattle, United States.
Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations.
View Article and Find Full Text PDFElife
September 2024
Living Systems Institute, University of Exeter, Exeter, United Kingdom.
Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid . Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
October 2024
Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Department of Radiology, University of Washington, Seattle, WA, United States; Department of Mechanical Engineering, University of Washington, Seattle, WA, United States; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, United States; Department of Neurology, University of Washington, Seattle, WA, United States. Electronic address:
Objectives: Vasospasm is a complication of aneurysmal subarachnoid hemorrhage (aSAH) that can change the trajectory of recovery and is associated with morbidity and mortality. Earlier detection of vasospasm could improve patient outcomes. Our objective is to evaluate the accuracy of smartphone-based quantitative pupillometry in the detection of radiographic vasospasm and delayed cerebral ischemia (DCI) after aSAH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!