Over the last decades, growing interest has turned to preventive and therapeutic approaches for achieving successful aging. Oxidative stress and inflammation are fundamental features of cardiovascular diseases; therefore, potential targets of them can improve cardiac outcomes. Our study aimed to examine the involvement of the endocannabinoid system, especially the CB1 receptor blockade, on inflammatory and oxidant/antioxidant processes. Twenty-month-old female and male Wistar rats were divided into rimonabant-treated and aging control (untreated) groups. Rimonabant, a selective CB1 receptor antagonist, was administered at the dose of 1 mg/kg/day for 2 weeks. Cardiac amounts of ROS, the antioxidant glutathione and superoxide dismutase (SOD), and the activity and concentration of the heme oxygenase (HO) enzyme were detected. Among inflammatory parameters, nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and myeloperoxidase (MPO) enzyme activity were measured. Two weeks of low dose rimonabant treatment significantly reduced the cardiac ROS via boosting of the antioxidant defense mechanisms as regards the HO system, and the SOD and glutathione content. Consistently, the age-related inflammatory response was alleviated. Rimonabant-treated animals showed significantly decreased NF-κB, TNF-α, and MPO levels. Our findings prove the beneficial involvement of CB1 receptor blocker rimonabant on inflammatory and oxidative damages to the aging heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773212PMC
http://dx.doi.org/10.3390/antiox11010162DOI Listing

Publication Analysis

Top Keywords

cb1 receptor
12
oxidative stress
8
stress inflammation
8
potential implications
4
rimonabant
4
implications rimonabant
4
rimonabant age-related
4
age-related oxidative
4
inflammation decades
4
decades growing
4

Similar Publications

Design of Small Non-Peptidic Ligands That Alter Heteromerization between Cannabinoid CB and Serotonin 5HT Receptors.

J Med Chem

December 2024

Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain.

Activation of cannabinoid CB receptors (CBR) by agonists induces analgesia but also induces cognitive impairment through the heteromer formed between CBR and the serotonin 5HT receptor (5HTR). This side effect poses a serious drawback in the therapeutic use of cannabis for pain alleviation. Peptides designed from the transmembrane helices of CBR, which are predicted to bind 5HTR and alter the stability of the CBR-5HTR heteromer, have been shown to avert CBR agonist-induced cognitive impairment while preserving analgesia.

View Article and Find Full Text PDF

alleviates experimentally acetic acid- induced ulcerative colitis in rats: targeting CB1/SIRT/MAPK signaling pathways.

Immunopharmacol Immunotoxicol

December 2024

Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt.

Background: Ulcerative colitis (UC) is a frequent inflammatory bowel disease (IBD) that causes long-lasting inflammation in the innermost lining of the rectum and colon.

Objective: The aim of this study was to evaluate the therapeutic effect of () on the amelioration of acetic acid-induced colitis in rats.

Materials And Methods: Group 1: normal control group was intrarectally administered saline solution (0.

View Article and Find Full Text PDF

The cannabinoid receptor 1 (CB1) is an essential component of the endocannabinoid system, responsible for regulating various physiological processes such as pain, mood, and appetite. Despite increasing interest in the therapeutic potential of CB1 modulators, the precise mechanisms by which small molecules modulate receptor activity-particularly without fully transitioning between active and inactive states-remain partially understood. In this study, the complexity of CB1-ligand interactions was evaluated for the inactive CB1 state.

View Article and Find Full Text PDF

Recent evidence suggests that cannabis can impair simple auditory processes, and these alterations might be due to cannabinoid agonism. The effect of cannabinoid agonism on relatively complex processes such as auditory discrimination is unknown. The goal of this study was to examine the impact of WIN 55,212-2, a CB1 receptor and CB2 receptor agonism, on auditory discrimination using a go/no-go task.

View Article and Find Full Text PDF

Cannabidiol induces autophagy via CB receptor and reduces α-synuclein cytosolic levels.

Brain Res

December 2024

Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.

Numerous studies have explored the role of cannabinoids in neurological conditions, chronic pain and neurodegenerative diseases. Restoring autophagy has been proposed as a potential target for the treatment of neurodegenerative diseases. In our study, we used a neuroblastoma cell line that overexpresses wild-type α-synuclein to investigate the effects of cannabidiol on autophagy modulation and reduction in the level of cytosolic α-synuclein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!