TAR DNA-binding protein 43 (TDP-43) is a member of an evolutionarily conserved family of heterogeneous nuclear ribonucleoproteins that modulate multiple steps in RNA metabolic processes. Cytoplasmic aggregation of TDP-43 in affected neurons is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and limbic predominant age-related TDP-43 encephalopathy (LATE). Mislocalized and accumulated TDP-43 in the cytoplasm induces mitochondrial dysfunction and reactive oxidative species (ROS) production. Here, we show that TDP-43- and rotenone-induced neurotoxicity in the human neuronal cell line SH-SY5Y were attenuated by hydroxocobalamin (Hb, vitamin B analog) treatment. Although Hb did not affect the cytoplasmic accumulation of TDP-43, Hb attenuated TDP-43-induced toxicity by reducing oxidative stress and mitochondrial dysfunction. Moreover, a shortened lifespan and motility defects in TDP-43-expressing were significantly mitigated by dietary treatment with hydroxocobalamin. Taken together, these findings suggest that oral intake of hydroxocobalamin may be a potential therapeutic intervention for TDP-43-associated proteinopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773243 | PMC |
http://dx.doi.org/10.3390/antiox11010082 | DOI Listing |
Am J Respir Cell Mol Biol
January 2025
University of Colorado Denver School of Medicine, Aurora, Colorado, United States;
Whether early life acetaminophen (APAP) exposures injure the developing lung is controversial. We sought to correlate murine pulmonary developmental expression profiles of to susceptibility to APAP exposure. P14 C57BL/6 mice were exposed to APAP (140 mg/kg x 1, IP) and assessed for evidence of a histologic, metabolic, functional, and/or transcriptional pulmonary response.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Diabetic foot ulcer (DFU) is a common and severe complication of diabetes mellitus, the etiology of which remains insufficiently understood, particularly regarding the involvement of extracellular vesicles (EVs). In this study, nanoflow cytometry to detect EVs in DFU skin tissues is used and found a significant increase in the Translocase of Outer Mitochondrial Membrane 20 (TOM20) mitochondrial-derived vesicles (MDVs). The role of MDVs in DFU is yet to be reported.
View Article and Find Full Text PDFMol Genet Metab Rep
March 2025
Department of Biochemistry, JSS Medical College and Hospital, JSS-AHER, Mysuru 570015, India.
Mitochondrial DNA (mtDNA) variants considerably affect diabetes mellitus by disturbing mitochondrial function, energy metabolism, oxidative stress response, and even insulin secretion. The m.3243 A > G variants is associated with maternally inherited diabetes and deafness (MIDD), where early onset diabetes and hearing loss are prominent features.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Acupuncture, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China.
Background: Optic atrophy (OA) is primarily caused by damage to the retinal pathway system, including widespread degeneration of retinal ganglion cells and axons, leading to visual impairment and blindness. Despite its clinical significance and diverse etiological factors, there is currently a lack of comprehensive bibliometric analyses exploring research trends and hotspots within this field.
Method: This study retrieved relevant literature on OA published between 2003 and 2023 from the Web of Science Core Collection database.
iScience
January 2025
Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada.
During infection, dengue virus (DENV) and Zika virus (ZIKV), two (ortho)flaviviruses of public health concern worldwide, induce alterations of mitochondria morphology to favor viral replication, suggesting a viral co-opting of mitochondria functions. Here, we performed an extensive transmission electron microscopy-based quantitative analysis to demonstrate that both DENV and ZIKV alter endoplasmic reticulum-mitochondria contact sites (ERMC). This correlated at the molecular level with an impairment of ERMC tethering protein complexes located at the surface of both organelles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!