On the basis that similar biochemical and histological sequences of events occur in the brain during thiamine deficiency and hypoxia/ischemia related brain damage, we have planned this review to discuss the possible therapeutic role of thiamine and its derivatives in the management of neonatal hypoxic-ischemic encephalopathy (HIE). Among the many benefits, thiamine as antioxidant, given intravenously (IV) at high doses, defined as dosage greater than 100 mg IV daily, should counteract the damaging effects of reactive oxygen and nitrogen species in the brain, including the reaction of peroxynitrite with the tyrosine residues of the major enzymes involved in intracellular glucose metabolism, which plays a key pathophysiological role in HIE in neonates. Accordingly, it is conceivable that, in neonatal HIE, the blockade of intracellular progressive oxidative stress and the rescue of mitochondrial function mediated by thiamine and its derivatives can lead to a definite neuroprotective effect. Because therapeutic hypothermia and thiamine may both act on the latent period of HIE damage, a synergistic effect of these therapeutic strategies is likely. Thiamine treatment may be especially important in mild HIE and in areas of the world where there is limited access to expensive hypothermia equipment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772822PMC
http://dx.doi.org/10.3390/antiox11010042DOI Listing

Publication Analysis

Top Keywords

neonatal hypoxic-ischemic
8
hypoxic-ischemic encephalopathy
8
thiamine derivatives
8
thiamine
7
hie
5
thiamine neuroprotective
4
neuroprotective strategy
4
strategy neonatal
4
encephalopathy basis
4
basis biochemical
4

Similar Publications

Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.

View Article and Find Full Text PDF

Background: Birth asphyxia is a major cause of neonatal mortality and neurological morbidity. This study was aimed to determine biochemical (sodium, potassium, and calcium) abnormalities and their correlation across different severities of perinatal asphyxia in term neonates.

Methods: This observational analytical study was conducted in term neonates with perinatal asphyxia admitted at the neonatal intensive care unit of a tertiary care centre for a period of 18 months.

View Article and Find Full Text PDF

Aim: To examine the efficacy of current non-servo-based cooling methods used by NETS NSW in treating hypoxic ischaemic encephalopathy (HIE) with therapeutic hypothermia (TH) in neonatal retrieval.

Methods: A retrospective observational study of infants treated with TH for HIE retrieved by NETS NSW from January 2017 to June 2020 inclusive. Primary outcomes were the proportion of neonates achieving TH within 6 h of life and maintaining temperature in a therapeutic range.

View Article and Find Full Text PDF

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the TUNEL assay data shown in Fig. 4B were strikingly similar to data appearing in different form in another article written by different authors at different research institutes that had already been submitted for publication to the journal (which has subsequently been retracted). Owing to the fact that these contentious data had already apparently been submitted for publication prior to the receipt of this paper to , the Editor has decided that this paper should be retracted from the Journal.

View Article and Find Full Text PDF

In term neonates with hypoxic-ischemic encephalopathy (HIE), cerebellar injury is becoming more and more acknowledged. Animal studies demonstrated that Purkinje cells (PCs) are especially vulnerable for hypoxic-ischemic injury. In neonates, however, the extent and pattern of PC injury has not been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!