A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Empirical Study on Classifiers for Earlier Prediction of COVID-19 Infection Cure and Death Rate in the Indian States. | LitMetric

Empirical Study on Classifiers for Earlier Prediction of COVID-19 Infection Cure and Death Rate in the Indian States.

Healthcare (Basel)

Department of Computer Science and Engineering, Gitam Institute of Technology, GITAM Deemed to be University, Visakhapatnam 530045, India.

Published: January 2022

Machine Learning methods can play a key role in predicting the spread of respiratory infection with the help of predictive analytics. Machine Learning techniques help mine data to better estimate and predict the COVID-19 infection status. A Fine-tuned Ensemble Classification approach for predicting the death and cure rates of patients from infection using Machine Learning techniques has been proposed for different states of India. The proposed classification model is applied to the recent COVID-19 dataset for India, and a performance evaluation of various state-of-the-art classifiers to the proposed model is performed. The classifiers forecasted the patients' infection status in different regions to better plan resources and response care systems. The appropriate classification of the output class based on the extracted input features is essential to achieve accurate results of classifiers. The experimental outcome exhibits that the proposed Hybrid Model reached a maximum F1-score of 94% compared to Ensembles and other classifiers like Support Vector Machine, Decision Trees, and Gaussian Naïve Bayes on a dataset of 5004 instances through 10-fold cross-validation for predicting the right class. The feasibility of automated prediction for COVID-19 infection cure and death rates in the Indian states was demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775063PMC
http://dx.doi.org/10.3390/healthcare10010085DOI Listing

Publication Analysis

Top Keywords

covid-19 infection
12
machine learning
12
prediction covid-19
8
infection cure
8
cure death
8
indian states
8
learning techniques
8
infection status
8
infection
6
classifiers
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!