A Classical Formulation of Quantum Theory?

Entropy (Basel)

Department of Physics, Williams College, Williamstown, MA 01267, USA.

Published: January 2022

We explore a particular way of reformulating quantum theory in classical terms, starting with phase space rather than Hilbert space, and with actual probability distributions rather than quasiprobabilities. The classical picture we start with is epistemically restricted, in the spirit of a model introduced by Spekkens. We obtain quantum theory only by combining a of restricted classical pictures. Our main challenge in this paper is to find a simple way of characterizing the allowed sets of classical pictures. We present one promising approach to this problem and show how it works out for the case of a single qubit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774830PMC
http://dx.doi.org/10.3390/e24010137DOI Listing

Publication Analysis

Top Keywords

quantum theory
8
classical pictures
8
classical
5
classical formulation
4
formulation quantum
4
quantum theory?
4
theory? explore
4
explore reformulating
4
reformulating quantum
4
theory classical
4

Similar Publications

This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.

View Article and Find Full Text PDF

Optical Properties of Phenylthiolate-Capped CdS Nanoparticles.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Using many-body perturbation theory, we study the optical properties of phenylthiolate-capped cadmium sulfide nanoparticles to understand the origin of the experimentally observed blue shift in those properties with decreasing particle size. We show that the absorption spectra predicted by many-body perturbation theory agree well with the experimentally measured spectra. The results of our calculations demonstrate that all low-energy excited states correspond to a mixture of two fundamental types of excitations: intraligand and ligand-to-metal charge-transfer excitations.

View Article and Find Full Text PDF

Gold nanoparticles can exhibit unique physical and chemical properties, such as plasmon resonances or photoluminescence. These nanoparticles have many atoms, which leads to high computational costs for density functional theory (DFT) calculations. In this work, we used the FLARE++ (fast learning of atomistic rare events) code and incorporated an active learning algorithm to construct force fields for gold thiolate-protected nanoclusters.

View Article and Find Full Text PDF

We study theoretically the quantum statistics of exciton-polaritons accumulated in two bosonic condensates linked with a coherent (Josephson) and dissipative channel. The weak lasing regime characterized by spontaneous symmetry breaking has been predicted for this system within the mean field approximation. Here we go beyond the mean field theory and show that the weak lasing regime also manifests itself in dramatic changes in the statistics of both condensates that may be revealed in measurements of the second-order coherence.

View Article and Find Full Text PDF

We argue that "processes versus objects" is not a useful dichotomy. There is, instead, substantial theoretical utility in viewing "objects" and "processes" as complementary ways of describing persistence through time, and hence the possibility of observation and manipulation. This way of thinking highlights the role of memory as an essential resource for observation, and makes it clear that "memory" and "time" are also mutually inter-defined, complementary concepts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!