A Photon Force and Flow for Dissipative Structuring: Application to Pigments, Plants and Ecosystems.

Entropy (Basel)

Facultad de Ciencias, Universidad Nacional Autónoma de México, Cto. de la Investigación Científica, Cuidad Universitaria, Mexico City C.P. 04510, Mexico.

Published: January 2022

Through a modern derivation of Planck's formula for the entropy of an arbitrary beam of photons, we derive a general expression for entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted grey-body emitted spectrum, with the rest being reflected or transmitted. Employing the framework of Classical Irreversible Thermodynamic theory, we define the generalized thermodynamic flow as the flow of photons from the incident beam into the material and the generalized thermodynamic force is, then, the entropy production divided by the photon flow, which is the entropy production per unit photon at a given wavelength. We compare the entropy production of different inorganic and organic materials (water, desert, leaves and forests) under sunlight and show that organic materials are the greater entropy-producing materials. Intriguingly, plant and phytoplankton pigments (including chlorophyll) reach peak absorption exactly where entropy production through photon dissipation is maximal for our solar spectrum 430<λ<550 nm, while photosynthetic efficiency is maximal between 600 and 700 nm. These results suggest that the evolution of pigments, plants and ecosystems has been towards optimizing entropy production, rather than photosynthesis. We propose using the wavelength dependence of global entropy production as a biosignature for discovering life on planets of other stars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774895PMC
http://dx.doi.org/10.3390/e24010076DOI Listing

Publication Analysis

Top Keywords

entropy production
20
generalized thermodynamic
8
organic materials
8
entropy
6
photon
5
production
5
photon force
4
flow
4
force flow
4
flow dissipative
4

Similar Publications

Robust discrimination between closely related species of salmon based on DNA fragments.

Anal Bioanal Chem

January 2025

Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.

Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.

View Article and Find Full Text PDF

Design of antiferroelectric polarization configuration for ultrahigh capacitive energy storage via increasing entropy.

Nat Commun

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, China.

Electric field induced antiferroelectric-ferroelectric phase transition is a double-edged sword for energy storage properties, which not only offers a congenital superiority with substantial energy storage density but also poses significant challenges such as large polarization hysteresis and poor efficiency, deteriorating the operation and service life of capacitors. Here, entropy increase effect is utilized to simultaneously break the long-range antiferroelectric order and locally adjust the fourfold commensurate modulated polarization configuration, leading to a breakthrough in the trade-off between recoverable energy storge density (14.8 J cm) and efficiency (90.

View Article and Find Full Text PDF

Tuning Dual Catalytic Active Sites of Pt Single Atoms Paired with High-Entropy Alloy Nanoparticles for Advanced Li-O Batteries.

ACS Nano

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.

To achieve a long cycle life and high-capacity performance for Li-O batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product LiO. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO intermediate (LiO(ads)), while Pt active sites exhibit weak adsorption energy and promote the soluble LiO pathway (LiO(sol)).

View Article and Find Full Text PDF

The paper analyzes the problem of entropy in the moments of transition from a normal economic situation (2015-2019) to the Pandemic period (2020-2021) and the period of Russia's attack on Ukraine (2022-2023). The research in the article is based on the analysis of electricity, oil, coal, and gas prices in 27 countries of the European Union and Norway. The daily data cover the period from January 1, 2015, to March 30, 2023, and were analyzed using two-dimensional sets of electricity and commodity prices.

View Article and Find Full Text PDF

Improved Ammonia Synthesis and Energy Output from Zinc-Nitrate Batteries by Spin-State Regulation in Perovskite Oxides.

J Am Chem Soc

January 2025

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.

Electrocatalytic nitrate reduction to ammonia (eNRA) is a promising route toward environmental sustainability and clean energy. However, its efficiency is often limited by the slow conversion of intermediates due to spin-forbidden processes. Here, we introduce a novel A-site high-entropy strategy to develop a new perovskite oxide (LaPrNdBaSr)CoO (LPNBSC) for eNRA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!