Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rich history of prime numbers includes great names such as Euclid, who first analytically studied the prime numbers and proved that there is an infinite number of them, Euler, who introduced the function ζ(s)≡∑n=1∞n-s=∏pprime11-p-s, Gauss, who estimated the rate at which prime numbers increase, and Riemann, who extended ζ(s) to the complex plane and conjectured that all nontrivial zeros are in the R(z)=1/2 axis. The nonadditive entropy Sq=k∑ipilnq(1/pi)(q∈R;S1=SBG≡-k∑ipilnpi, where BG stands for Boltzmann-Gibbs) on which nonextensive statistical mechanics is based, involves the function lnqz≡z1-q-11-q(ln1z=lnz). It is already known that this function paves the way for the emergence of a -generalized algebra, using -numbers defined as ⟨x⟩q≡elnqx, which recover the number for q=1. The -prime numbers are then defined as the -natural numbers ⟨n⟩q≡elnqn(n=1,2,3,⋯), where is a prime number p=2,3,5,7,⋯ We show that, for any value of , infinitely many -prime numbers exist; for q≤1 they diverge for increasing prime number, whereas they converge for q>1; the standard prime numbers are recovered for q=1. For q≤1, we generalize the ζ(s) function as follows: ζq(s)≡⟨ζ(s)⟩q (s∈R). We show that this function appears to diverge at s=1+0, ∀q. Also, we alternatively define, for q≤1, ζq∑(s)≡∑n=1∞1⟨n⟩qs=1+1⟨2⟩qs+⋯ and ζq∏(s)≡∏pprime11-⟨p⟩q-s=11-⟨2⟩q-s11-⟨3⟩q-s11-⟨5⟩q-s⋯, which, for q<1, generically satisfy ζq∑(s)<ζq∏(s), in variance with the q=1 case, where of course ζ1∑(s)=ζ1∏(s).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774434 | PMC |
http://dx.doi.org/10.3390/e24010060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!