A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Along the Lines of Nonadditive Entropies: -Prime Numbers and -Zeta Functions. | LitMetric

The rich history of prime numbers includes great names such as Euclid, who first analytically studied the prime numbers and proved that there is an infinite number of them, Euler, who introduced the function ζ(s)≡∑n=1∞n-s=∏pprime11-p-s, Gauss, who estimated the rate at which prime numbers increase, and Riemann, who extended ζ(s) to the complex plane and conjectured that all nontrivial zeros are in the R(z)=1/2 axis. The nonadditive entropy Sq=k∑ipilnq(1/pi)(q∈R;S1=SBG≡-k∑ipilnpi, where BG stands for Boltzmann-Gibbs) on which nonextensive statistical mechanics is based, involves the function lnqz≡z1-q-11-q(ln1z=lnz). It is already known that this function paves the way for the emergence of a -generalized algebra, using -numbers defined as ⟨x⟩q≡elnqx, which recover the number for q=1. The -prime numbers are then defined as the -natural numbers ⟨n⟩q≡elnqn(n=1,2,3,⋯), where is a prime number p=2,3,5,7,⋯ We show that, for any value of , infinitely many -prime numbers exist; for q≤1 they diverge for increasing prime number, whereas they converge for q>1; the standard prime numbers are recovered for q=1. For q≤1, we generalize the ζ(s) function as follows: ζq(s)≡⟨ζ(s)⟩q (s∈R). We show that this function appears to diverge at s=1+0, ∀q. Also, we alternatively define, for q≤1, ζq∑(s)≡∑n=1∞1⟨n⟩qs=1+1⟨2⟩qs+⋯ and ζq∏(s)≡∏pprime11-⟨p⟩q-s=11-⟨2⟩q-s11-⟨3⟩q-s11-⟨5⟩q-s⋯, which, for q<1, generically satisfy ζq∑(s)<ζq∏(s), in variance with the q=1 case, where of course ζ1∑(s)=ζ1∏(s).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774434PMC
http://dx.doi.org/10.3390/e24010060DOI Listing

Publication Analysis

Top Keywords

prime numbers
16
-prime numbers
12
numbers
8
prime number
8
prime
6
function
5
lines nonadditive
4
nonadditive entropies
4
entropies -prime
4
numbers -zeta
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!