A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Grouping Differential Evolution Algorithm Boosted by Attraction and Repulsion Strategies for Masi Entropy-Based Multi-Level Image Segmentation. | LitMetric

Masi entropy is a popular criterion employed for identifying appropriate threshold values in image thresholding. However, with an increasing number of thresholds, the efficiency of Masi entropy-based multi-level thresholding algorithms becomes problematic. To overcome this, we propose a novel differential evolution (DE) algorithm as an effective population-based metaheuristic for Masi entropy-based multi-level image thresholding. Our ME-GDEAR algorithm benefits from a grouping strategy to enhance the efficacy of the algorithm for which a clustering algorithm is used to partition the current population. Then, an updating strategy is introduced to include the obtained clusters in the current population. We further improve the algorithm using attraction (towards the best individual) and repulsion (from random individuals) strategies. Extensive experiments on a set of benchmark images convincingly show ME-GDEAR to give excellent image thresholding performance, outperforming other metaheuristics in 37 out of 48 cases based on cost function evaluation, 26 of 48 cases based on feature similarity index, and 20 of 32 cases based on Dice similarity. The obtained results demonstrate that population-based metaheuristics can be successfully applied to entropy-based image thresholding and that strengthening both exploitation and exploration strategies, as performed in ME-GDEAR, is crucial for designing such an algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774936PMC
http://dx.doi.org/10.3390/e24010008DOI Listing

Publication Analysis

Top Keywords

image thresholding
16
masi entropy-based
12
entropy-based multi-level
12
cases based
12
differential evolution
8
evolution algorithm
8
multi-level image
8
current population
8
algorithm
7
image
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!