Corneal blindness is the major cause of vision impairment and the fourth-largest leading cause of blindness worldwide. An allograft corneal transplant is the most routine treatment for visual loss. Further complications can occur, such as transplant rejection, astigmatism, glaucoma, uveitis, retinal detachment, corneal ulceration due to reopening of the surgical wounds, and infection. For patients with autoimmune disorders, allografting for chemical burns and infections is contraindicated because of the risk of disease transmission and further complications. Moreover, corrective eye surgery renders the corneas unsuitable for allografting, further increasing the gap between donor tissue demand and supply. Due to these challenges, other therapeutic strategies such as artificial alternatives to donor corneal tissue are being considered. This review focuses on the use of alginate as a building block of therapeutic drugs or cell delivery systems to enhance drug retention and encourage corneal regeneration. The similarity of alginate hydrogel water content to native corneal tissue makes it a promising support structure. Alginate possess desired drug carrier characteristics, such as mucoadhesiveness and penetration enhancing properties. Whilst alginates have been extensively studied for their application in tissue engineering (TE), with many reviews being published, no reviews exist to our knowledge directly looking at alginates for corneal applications. The role of alginate in drug delivery to the surface of the eye and as a support structure (bioinspired tissue scaffold) for corneal TE is discussed. Biofabrication techniques such as gel casting, electrospinning, and bioprinting to develop tissue precursors and substitutes are compared. Finally, cell and tissue encapsulation in alginate for storage and transport to expand the scope of cell-based therapy for corneal blindness is also discussed in the light of recent applications of alginate in maintaining the function of biofabricated constructs for storage and transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ac4d7b | DOI Listing |
Cureus
December 2024
Cornea and Refractive Surgery, Al-Shifa Trust Eye Hospital, Rawalpindi, PAK.
Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Nankai University Eye Institute, Nankai University, Tianjin, 300071, China.
Reproducing the microstructure of the natural cornea remains a significant challenge in achieving the mechanical and biological functionality of artificial corneas. Therefore, the development of cascade structures that mimic the natural extracellular matrix (ECM), achieving both macro-stability and micro-structure, is of critical importance. This study proposes a novel, efficient, and general photo-functionalization strategy for modifying natural biomaterials.
View Article and Find Full Text PDFJ Clin Med
January 2025
Eye Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy.
: The aim of this study was to evaluate the effect of a surgical technique for managing post-penetrating keratoplasty (PK) ectasia complicated by late endothelial failure (LEF). : A single-center pilot case series was conducted regarding consecutive patients affected by post-PK ectasia with late graft failure. Using a microkeratome, a single donor cornea was dissected to prepare a two-piece graft, comprising a larger anterior lamella made up of anterior stroma and a smaller posterior lamella made up of posterior stroma, Descemet's membrane, and endothelium.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain.
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
NDDH, Royal Devon University Healthcare NHS Foundation Trust, Barnstaple EX31 4JB, UK.
Pseudoexfoliation syndrome (PXS) is an age-related fibrillopathy where fibrillar exfoliation material accumulates and deposits in ocular and extra-ocular tissue. Within the eye, this substance accumulates on the ocular surface and in the anterior segment of the eye, impacting ocular structures such as the conjunctiva, Tenon's capsule, sclera, cornea, iris, ciliary body, trabecular meshwork, and lens. This review aims to collate the current literature on how each anatomical part of the eye is affected by PXS, with a strong focus on molecular changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!