Predicting individual traits from unperformed tasks.

Neuroimage

Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Published: April 2022

Relating individual differences in cognitive traits to brain functional organization is a long-lasting challenge for the neuroscience community. Individual intelligence scores were previously predicted from whole-brain connectivity patterns, extracted from functional magnetic resonance imaging (fMRI) data acquired at rest. Recently, it was shown that task-induced brain activation maps outperform these resting-state connectivity patterns in predicting individual intelligence, suggesting that a cognitively demanding environment improves prediction of cognitive abilities. Here, we use data from the Human Connectome Project to predict task-induced brain activation maps from resting-state fMRI, and proceed to use these predicted activity maps to further predict individual differences in a variety of traits. While models based on original task activation maps remain the most accurate, models based on predicted maps significantly outperformed those based on the resting-state connectome. Thus, we provide a promising approach for the evaluation of measures of human behavior from brain activation maps, that could be used without having participants actually perform the tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.118920DOI Listing

Publication Analysis

Top Keywords

activation maps
16
brain activation
12
predicting individual
8
individual differences
8
individual intelligence
8
connectivity patterns
8
task-induced brain
8
models based
8
maps
6
individual traits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!