Measuring how the pollution load evolves in real time along sewer networks is key for proper management of water resources and protecting the environment. The technique of molecular spectroscopy for water characterization has increasingly widespread use, as it is a non-invasive technique that leads to the correlation of the physical-chemical conditions of wastewater with spectroscopic surrogates by a series of mathematical estimation models. In the present research work, different symbolic regression models obtained with evolutive genetic algorithms are evaluated for the estimation of chemical oxygen demand (COD); five-day biochemical oxygen demand (BOD); total suspended solids (TSS); total phosphorus (TP); and total nitrogen (TN), from the spectral response of samples measured between 380 and 700 nm and without the use of chemicals or pre-treatment. Around 650 wastewater samples were used in the campaign, from 43 different wastewater treatment plants (WWTP) in which both, raw/influent and treated/effluent, were examined through 18 models composed of Classical Genetic Algorithm (CGA), the Age-Layered Population Structure (ALPS), and Offspring Selection (OS) by mean of HeuristicLab software, to make a comparison among them and to determine which models and wavelengths are most suitable for the correlation. Models are proposed considering both raw and treated samples together (15) and only with tertiary treated wastewater reclaimed for agriculture irrigation effluent (3). The Pearson correlation coefficients were in the range of 67-91% for the test data in the case of the combined models. The results conform the first steps for a real-time monitoring of WWTP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.133610 | DOI Listing |
Microbiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
Genome Med
January 2025
Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Department of Pharmacy, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
Background: Alopecia areata (AA) is a common non-scarring hair loss disorder associated with autoimmune conditions. However, the pathobiology of AA is not well understood, and there is no targeted therapy available for AA. METHODS: In this study, differential gene expression analysis, immune status assessment, weighted correlation network analysis (WGCNA), and functional enrichment analysis were performed to identify shared genes associated with both immunological response and AA.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Department of Management Information Systems, National Chung Hsing University, Taichung, 402, Taiwan.
Background: miRNAs (microRNAs) are endogenous RNAs with lengths of 18 to 24 nucleotides and play critical roles in gene regulation and disease progression. Although traditional wet-lab experiments provide direct evidence for miRNA-disease associations, they are often time-consuming and complicated to analyze by current bioinformatics tools. In recent years, machine learning (ML) and deep learning (DL) techniques are powerful tools to analyze large-scale biological data.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
Background: All chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!