A novel strategy adaptive to 3D printing of stereo-complexed polylactide matrix for simultaneous toughness and stiffness was designed. Stereo-complexation is a potent way to enhance both aqueous stability and heat resistance of polylactide, but also aggravates brittleness problem of polylactide. Though poly(butyleneadipate-co-terephthalate) elastomer with epoxidized compatibilizer improved stiffness and toughness of common polylactide, their effectiveness on mechanical and crystallization properties of stereo-complexed polylactide remained unknown. More importantly, incorporation of above techniques into 3D printing kept a fundamental challenge. Both stereo-complexation of polylactide and covalent coupling of polylactide and poly(butyleneadipate-co-terephthalate) by epoxidized compatibilizer are easy to occur when preparing the filaments for printing, impeding the following 3D printing procedure. The hypothesis for this research is that controlled hierarchical crystallization and reaction in three thermal processes could ensure simultaneous toughness and stiffness, and complete stereo-complexation in polylactide matrices. Reinforcing effects of a selected epoxidized compatibilizer, POSS, on crystallinities, thermal properties, mechanical properties and morphologies were systematically studied. Such a strategy not only removed the obstacles in incorporating stereo-complexation and coupling techniques of polylactide into 3D printing, but also revealed the mechanism to produce high-performance 3D printed polylactide matrix via hierarchical crystallization and reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.01.090 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China.
Soft capacitive sensors are widely utilized in wearable devices, flexible electronics, and soft robotics due to their high sensitivity. However, they may suffer delamination and/or debonding due to their low interfacial toughness. In addition, they usually exhibit a small measurement range resulting from their limited stiffness variation range.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.
Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a low polymer.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
Conductive hydrogels have great potential for applications in flexible wearable sensors due to the combination of biocompatibility, mechanical flexibility and electrical conductivity. However, constructing conductive hydrogels with high toughness, low hysteresis and skin-like modulus simultaneously remains challenging. In the present study, we prepared a tough and conductive polyacrylamide/pullulan/ammonium sulfate hydrogel with a semi-interpenetrating network.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
Advanced elastomers with outstanding strength, toughness, and reusability hold significant potential for diverse applications. Using photochemistry and mechanochemistry to develop such materials has become a very effective strategy. Here, we report that photoreversible coumarin-based mechanophores that can make force-/light-triggered cycloreversion are chemically incorporated into polyurethane elastomers to simultaneously enhance their strength and toughness.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn dynamic coordination into the elastomer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!