The present work was the first exploration of the use of industrial byproducts from iron and titanium processing as sorbents for the stabilization of soil contamination. The main aim was to test slag waste and iron-rich charred fossil coal ("Fe-char"), as sorbents for per- and polyfluorinated alkyl substances (PFASs), as well as lead (Pb) and antimony (Sb), in four soils from a firefighting training area (PFASs) and a shooting range (Pb and Sb). Adding slag (10-20%) to shooting range soils decreased the leaching of Pb and Sb up to 50-90%. Fe-char amendment to these soils resulted in a moderate reduction in Sb leaching (20-70%) and a slightly stronger effect on Pb (40-50%). The sorption is most likely explained by the presence of Fe oxyhydroxides. These are present in the highest concentrations in the slag, probably resulting in more effective metal binding to the slag than to the Fe-char. Fe-char but not slag proved to be a strong sorbent for PFASs (reducing PFAS leaching from the soil by up to 99.7%) in soil containing low total organic carbon (TOC; 1.2%) but not in high-TOC soil (34%). The sorption coefficient K for Fe-char was high, in the range of 10 to 10 L/kg at 1 ng/L in the low-TOC soil. The K value increased with increasing perfluorocarbon chain length, exceeding PFAS sorption to biochar in the low ng/L concentration range. This result indicates that the mechanism behind the strong PFAS sorption to Fe-char was mainly van der Waals dispersive interactions between the hydrophobic PFAS-chain and the aromatic π-electron systems on nanopore walls within the Fe-char matrix. Overall, this study indicates that industrial byproducts can provide sustainable and cost-effective materials for soil remediation. However, the sorbent needs to be tailored to the type of soil and type of contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.153188 | DOI Listing |
Heliyon
December 2024
The Petroleum and Petrochemical College, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
Glycerol, a by-product of biodiesel production through transesterification, presents an opportunity for biodiesel industries to transform surplus glycerol into high-value chemical products. This study focuses on the development of a series of propyl sulfonic acid functionalized (PrSOH) SBA-15 catalysts, synthesized by direct synthesis of 3-mercaptopropyltrimethoxysilane (MPTMS) and tetraethoxysilane (TEOS) in an acidic medium. The catalysts were evaluated for acetylation of glycerol with acetic acid under conditions optimized through response surface methodology.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul Republic of Korea
The C chemical species, potassium formate (K(HCO)), known as a two-electron reducing agent, finds application in the synthesis of multi-carbon compounds, including oxalate, and plays a crucial role not only in the food and pharmaceutical industries but also across various sectors. However, the direct hydrogenation of CO to produce K(HCO) remains a challenge. Addressing this issue, efficient production of K(HCO) is achieved by integrating CO hydrogenation in a trickle-bed reactor using a heterogeneous catalyst with a novel separation method that utilizes potassium ions from biomass ash for formic acid derivative product isolation.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Food Science and Technology, Botswanan University of Agriculture and Natural Resources, Botswana.
Avocados are among the most well-known nutrient-rich fruits worldwide. However, there is a high production of by-product waste, mainly avocado seeds. Avocado seeds can be used in many functional food and non-food applications, due to their nutritional and health-promoting properties.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Engineering, Autonomous University of Queretaro, Santiago de Queretaro, Qro, 76010, Mexico.
The search for alternative material sources to conventional ones has had a significant impact on the construction sector today, driven by the implementation of sustainable development policies on a global scale. Alternative cementitious materials, such as agricultural industry by-products, have been introduced to ensure the efficient use of renewable natural resources while promoting a balance between the technical and economic aspects of infrastructure projects. This article provides an overview of research conducted on the use of pozzolans derived from agro-industrial by-products, such as rice husk ash (RHA), palm oil fuel ash (POFA), and sugarcane bagasse ash (SCBA), which have a high content of amorphous silica.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
The main bottleneck in the catalytic combustion of chlorinated volatile organic compounds (CVOCs) is deactivation and the production of chlorine-containing byproducts originating from the chlorine species deposited on the catalyst. Herein, Ru supported on SnO (Ru/SnO) was prepared with the lattice matching principle. As RuO and SnO are both rutile phases, Ru species were present as highly dispersed RuO particles on the Ru/SnO catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!