During development, the mammalian lung undergoes several rounds of branching, the rate of which is tuned by the relative pressure of the fluid within the lumen of the lung. We carried out bioinformatics analysis of RNA-sequencing of embryonic mouse lungs cultured under physiologic or sub-physiologic transmural pressure and identified transcription factor-binding motifs near genes whose expression changes in response to pressure. Surprisingly, we found retinoic acid (RA) receptor binding sites significantly overrepresented in the promoters and enhancers of pressure-responsive genes. Consistently, increasing transmural pressure activates RA signaling, and pharmacologically inhibiting RA signaling decreases airway epithelial branching and smooth muscle wrapping. We found that pressure activates RA signaling through the mechanosensor Yap. A computational model predicts that mechanical signaling through Yap and RA affects lung branching by altering the balance between epithelial proliferation and smooth muscle wrapping, which we test experimentally. Our results reveal that transmural pressure signals through RA to balance the relative rates of epithelial growth and smooth muscle differentiation in the developing mouse lung and identify RA as a previously unreported component in the mechanotransduction machinery of embryonic tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917413 | PMC |
http://dx.doi.org/10.1242/dev.199726 | DOI Listing |
Ann Thorac Surg Short Rep
June 2024
Division of Cardiothoracic Surgery, Department of Surgery, University of Kentucky, Lexington, Kentucky.
Postoperative positive pressure ventilation (PPV) can contribute to failure of large intrathoracic airway repairs. We report a case of a 67-year-old woman with severe emphysema who presented with an unstable airway and mediastinitis after full-length transmural intrathoracic tracheal intubation injury. After repair, neither extubation nor PPV distal to the repair was feasible.
View Article and Find Full Text PDFBrain Sci
December 2024
School of Mechanical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
Background/objectives: Cerebrospinal infusion studies indicate that cerebrospinal fluid outflow resistance (R) is elevated in normal pressure hydrocephalus (NPH). These studies assume that the cerebrospinal formation rate (CSF) does not vary during the infusion. If the CSF were to increase during the infusion then the R would be overestimated.
View Article and Find Full Text PDFCureus
November 2024
Gastroenterology, Institute for Specialization and Mastering of Doctors, University Hospital Tsaritsa Ioanna, Sofia, BGR.
Boerhaave's syndrome is a rare critical condition manifesting as transmural esophageal rupture. It is usually associated with forceful emesis and increased intraesophageal pressure. Immediate aggressive surgical intervention is imperative in such cases.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2025
Department of Biomedical Engineering, Toyo University, Saitama, Japan.
A previous study reported an increase in carotid-femoral pulse wave velocity (cfPWV) during an upright posture compared to the supine position, partly due to sympathetic activation. However, given that cfPWV is influenced by the transmural pressure (TMP) of the artery, which is elevated in the abdominal aorta in the seated posture due to the increased hydrostatic pressure. Thus, it remains unclear whether this increased cfPWV reflects a true rise in arterial stiffness or is simply a result of the elevated TMP.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta, 3, Florence, 50139, Italy.
Mathematical and physical modeling of flows in collapsible pipes often relates the flow area to the difference between the internal and the external pressures (i.e. the transmural pressure).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!