Allyl isothiocyanate (AITC), a constituent of Brassica family plants, has been reported to possess a high bioactivity in animal and human cells, showing ambiguous properties from adverse to beneficial ones. It was reported its genotoxic, carcinogenic, goitrogenic effects. On the other side, AITC has shown anti-cancer, cardioprotective, neuroprotective, and lately anti-obesity abilities. So far, its anti-diabetic effects are poorly explored. We tried to assess AITC action on carbohydrate, lipid and hormonal disorders in high fat diet-fed/streptozotocin diabetic rats. In this report, diabetic rats were treated intragastrically at doses 2.5, 5 and 25 mg/kg b.w./day of AITC for 2 weeks. Irrespectively of doses, AITC considerably lowered thyroid hormones (fT4, fT3), increased liver TG content, and also caused robust LDL-cholesterol and direct bilirubin concentration enhancement. Moreover, AITC at the highest dose caused pancreatic amylase and lipase drops and thyroid gland hypertrophy. AITC at 2.5 and 5 mg significantly reduced blood glucose levels along with robust beta-hydroxybutyric acid drop. Additionally, AITC at 5 mg improved insulin sensitivity (HOMA-IR index) in spite of reduced blood insulin. To conclude, despite amelioration of diabetic hyperglycemia by AITC, the adverse lipids and hormonal effects may exclude its use as a health-promoting compound in terms of anti-diabetic properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780617 | PMC |
http://dx.doi.org/10.3390/toxins14010003 | DOI Listing |
J Food Sci
January 2025
Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
This study aimed to investigate the potential hypoglycemic mechanism of red ginseng acidic polysaccharides (RGAP) from the perspective of fatty acid (FA) regulation. A high-glucose/high-fat diet in conjunction with streptozotocin administration was employed to establish type 2 diabetes mellitus (T2DM) rat models, and their fecal FAs were detected using the liquid chromatography-mass spectrometry (LC-MS) method. RGAP treatment alleviated the polyphagia, polydipsia, weight loss, and hyperglycemia observed in T2DM rats.
View Article and Find Full Text PDFMaxillofac Plast Reconstr Surg
January 2025
Gangneung-Wonju National University KR, Gangneung-si, Gangwon-do, Republic of Korea.
Background: This study aimed to evaluate the effects of 4-hexylresorcinol (4HR), a synthetic compound with antioxidant and stress-modulating properties, on diabetic sarcopenia in the masseter muscle.
Methods: A controlled, parallel-arm study was conducted using 38 Sprague-Dawley rats divided into diabetic and non-diabetic groups. Diabetes was induced with streptozotocin (STZ), and the groups were further subdivided to receive weekly subcutaneous injections of either 4HR or saline.
Cureus
December 2024
Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, IND.
Purpose: Diabetic encephalopathy (DE) is one of the complications of diabetes that affects the brain. In the Ayurveda system of medicine, Vasant Kusumakar Rasa (VKR) is cited as a classical herbo-mineral formulation for diabetes. However, the role of VKR in DE is still unclear.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
The dipeptide Tyr-Pro, a novel natural agonist of adiponectin receptor 1 (AdipoR1), promotes glucose uptake in skeletal muscle cells. This study investigated the antidiabetic effect of orally administered Tyr-Pro in spontaneously diabetic Torii (SDT) rats. Oral administration of Tyr-Pro (1 mg/kg/day) improved glucose intolerance in SDT rats at 22 weeks of prediabetic age.
View Article and Find Full Text PDFJ Pharmacol Sci
February 2025
Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
Diabetic retinopathy (DR) is the leading cause of blindness among working-age adults, and inflammation and oxidative stress contribute to DR development. However, no effective treatments are currently approved for DR. Therefore, this study aimed to investigate the effects of SMTP-44D-a Stachybotrys microspora-derived compound with anti-inflammatory and antioxidant properties-on DR in in vivo and in vitro models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!