Differentiated Effects of Allyl Isothiocyanate in Diabetic Rats: From Toxic to Beneficial Action.

Toxins (Basel)

Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznan, Poland.

Published: December 2021

Allyl isothiocyanate (AITC), a constituent of Brassica family plants, has been reported to possess a high bioactivity in animal and human cells, showing ambiguous properties from adverse to beneficial ones. It was reported its genotoxic, carcinogenic, goitrogenic effects. On the other side, AITC has shown anti-cancer, cardioprotective, neuroprotective, and lately anti-obesity abilities. So far, its anti-diabetic effects are poorly explored. We tried to assess AITC action on carbohydrate, lipid and hormonal disorders in high fat diet-fed/streptozotocin diabetic rats. In this report, diabetic rats were treated intragastrically at doses 2.5, 5 and 25 mg/kg b.w./day of AITC for 2 weeks. Irrespectively of doses, AITC considerably lowered thyroid hormones (fT4, fT3), increased liver TG content, and also caused robust LDL-cholesterol and direct bilirubin concentration enhancement. Moreover, AITC at the highest dose caused pancreatic amylase and lipase drops and thyroid gland hypertrophy. AITC at 2.5 and 5 mg significantly reduced blood glucose levels along with robust beta-hydroxybutyric acid drop. Additionally, AITC at 5 mg improved insulin sensitivity (HOMA-IR index) in spite of reduced blood insulin. To conclude, despite amelioration of diabetic hyperglycemia by AITC, the adverse lipids and hormonal effects may exclude its use as a health-promoting compound in terms of anti-diabetic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780617PMC
http://dx.doi.org/10.3390/toxins14010003DOI Listing

Publication Analysis

Top Keywords

diabetic rats
12
aitc
9
allyl isothiocyanate
8
reduced blood
8
differentiated effects
4
effects allyl
4
diabetic
4
isothiocyanate diabetic
4
rats toxic
4
toxic beneficial
4

Similar Publications

This study aimed to investigate the potential hypoglycemic mechanism of red ginseng acidic polysaccharides (RGAP) from the perspective of fatty acid (FA) regulation. A high-glucose/high-fat diet in conjunction with streptozotocin administration was employed to establish type 2 diabetes mellitus (T2DM) rat models, and their fecal FAs were detected using the liquid chromatography-mass spectrometry (LC-MS) method. RGAP treatment alleviated the polyphagia, polydipsia, weight loss, and hyperglycemia observed in T2DM rats.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the effects of 4-hexylresorcinol (4HR), a synthetic compound with antioxidant and stress-modulating properties, on diabetic sarcopenia in the masseter muscle.

Methods: A controlled, parallel-arm study was conducted using 38 Sprague-Dawley rats divided into diabetic and non-diabetic groups. Diabetes was induced with streptozotocin (STZ), and the groups were further subdivided to receive weekly subcutaneous injections of either 4HR or saline.

View Article and Find Full Text PDF

Purpose: Diabetic encephalopathy (DE) is one of the complications of diabetes that affects the brain. In the Ayurveda system of medicine, Vasant Kusumakar Rasa (VKR) is cited as a classical herbo-mineral formulation for diabetes. However, the role of VKR in DE is still unclear.

View Article and Find Full Text PDF

The dipeptide Tyr-Pro, a novel natural agonist of adiponectin receptor 1 (AdipoR1), promotes glucose uptake in skeletal muscle cells. This study investigated the antidiabetic effect of orally administered Tyr-Pro in spontaneously diabetic Torii (SDT) rats. Oral administration of Tyr-Pro (1 mg/kg/day) improved glucose intolerance in SDT rats at 22 weeks of prediabetic age.

View Article and Find Full Text PDF

SMTP-44D alleviates diabetic retinopathy by suppressing inflammation and oxidative stress in in vivo and in vitro models.

J Pharmacol Sci

February 2025

Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.

Diabetic retinopathy (DR) is the leading cause of blindness among working-age adults, and inflammation and oxidative stress contribute to DR development. However, no effective treatments are currently approved for DR. Therefore, this study aimed to investigate the effects of SMTP-44D-a Stachybotrys microspora-derived compound with anti-inflammatory and antioxidant properties-on DR in in vivo and in vitro models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!