Personalized Multimodal Demarcation of Peritumoral Tissue in Glioma.

JCO Precis Oncol

Mind, Brain Imaging, and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada.

Published: November 2020

Purpose: Gliomas are life-threatening brain tumors, and the extent of surgical resection is one of the strongest influences on survival rate. However, the proper distinction of infiltrated tissue remains elusive. The aim of this study was to use multimodal analyses to demarcate peritumoral tissue (PT) from tumoral (TT) and healthy tissue (HT).

Methods: A total of 40 patients with histologically confirmed glioma were recruited. We analyzed resting-state functional magnetic resonance imaging (rs-fMRI) using the voxel-based mean blood-oxygen-level-dependent (BOLD) signal and the corresponding structural MRI (s-MRI) alongside RNA sequencing, whole-exome sequencing, and histology results of biopsy samples obtained from PT, HT, and TT.

Results: We demarcated a functionally defined PT area where the mean BOLD signal gradually decreased near the edge of the tumor and extended beyond the TT borders (as defined by s-MRI), which was confirmed on a case-by-case basis. Correspondingly, genetic analyses showed a gene expression pattern and mutational landscape of the PT that were distinct from that seen in HT and TT. The genetic characterization of PT relative to HT and TT converged with the MRI-defined PT zones. This was confirmed in three individual cases after additional histologic analysis. A wider PT was associated with a longer progression-free survival, which suggests PT might act as an intermediate area between TT and HT.

Conclusion: Combined multimodal imaging and genetic analyses can allow for an objective demarcation of the PT in glioma and a robust classification of the degree of infiltration of the PT. These findings could help improve both neurosurgical resection and radio-oncologic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1200/PO.20.00115DOI Listing

Publication Analysis

Top Keywords

peritumoral tissue
8
bold signal
8
genetic analyses
8
personalized multimodal
4
multimodal demarcation
4
demarcation peritumoral
4
tissue
4
tissue glioma
4
glioma purpose
4
purpose gliomas
4

Similar Publications

Background: The tumor microenvironment is a significant mediator enabling tumor growth and progression. Tumor-infiltrating lymphocytes (TILs) are an important component of this but tumor cells develop mechanisms by which they can escape the action of the immune system. Immunosuppressive mechanisms cooperate with each other and involve cells of the immune system, the tumor microenvironment itself, chemokines and cytokines.

View Article and Find Full Text PDF

Purpose: Isocitrate dehydrogenase (IDH) mutation status serves as a crucial prognostic indicator for glioma, typically assessed via immunohistochemical analysis post-surgery. Given the invasiveness of this approach, perhaps we can utilise convenient and noninvasive magnetic resonance imaging (MRI) methods to predict IDH mutation status. However, the current landscape lacks a standardised MRI technique for accurately predicting IDH mutations.

View Article and Find Full Text PDF

Mesenchymal stem cell-mediated adipogenic transformation: a key driver of oral squamous cell carcinoma progression.

Stem Cell Res Ther

January 2025

Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.

Background: Interaction between mesenchymal stem cells (MSCs) and oral squamous cell carcinoma (OSCC) cells plays a major role in OSCC progression. However, little is known about adipogenic differentiation alteration in OSCC-derived MSCs (OSCC-MSCs) and how these alterations affect OSCC growth.

Methods: MSCs were successfully isolated and cultured from normal gingival tissue, OSCC peritumoral tissue, and OSCC tissue.

View Article and Find Full Text PDF

Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.

Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.

View Article and Find Full Text PDF

Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!