Comparison of Combinatorial Fragment Spaces and Its Application to Ultralarge Make-on-Demand Compound Catalogs.

J Chem Inf Model

Universität Hamburg, ZBH - Center for Bioinformatics, Research Group for Computational Molecular Design, Bundesstraße 43, 20146 Hamburg, Germany.

Published: February 2022

The set of chemical compounds shared by two or more chemical libraries is assessed routinely as means of comparing these libraries for various applications. Traditionally this is achieved by comparing the members of the chemical libraries individually for identity. This approach becomes impractical when operating on chemical libraries exceeding billions or even trillions of compounds in size. As a result, no such analysis exists for ultralarge chemical spaces like the Enamine REAL Space containing over 20 billion compounds. In this work, we present a novel tool called SpaceCompare for the overlap calculation of large, nonenumerable combinatorial fragment spaces. In contrast to existing methods, SpaceCompare utilizes topological fingerprints and the combinatorial character of these chemical spaces. The tool is able to determine the exact overlap of prominent spaces like Enamine's REAL Space, WuXi's GalaXi Space, and Otava's CHEMriya for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.1c01378DOI Listing

Publication Analysis

Top Keywords

chemical libraries
12
combinatorial fragment
8
fragment spaces
8
chemical spaces
8
real space
8
chemical
6
spaces
5
comparison combinatorial
4
spaces application
4
application ultralarge
4

Similar Publications

The functions of peptides often emerge upon their self-assembly or binding with other co-factors. However, the synthetic complexity makes these functional peptides intractable. Here, we utilize the ester-amide exchange reaction in deep eutectic solvents to generate peptide libraries from unactivated amino acids.

View Article and Find Full Text PDF

A combination of pathway enrichment and metabolite clustering analysis is used to interpret untargeted H NMR metabolomics data, enabling a biochemically informative comparison of the effects induced by a panel of known cytotoxic gold(I) and gold(III) compounds in A2780 ovarian cancer cells. The identification of the most dysregulated pathways for the major classes of compounds highlights specific chemical features that lead to common biological effects. The proposed approach may have broader applicability to the screening of metal-based drug candidate libraries, which is always complicated by their multitarget nature, and support the comprehensive interpretation of their metabolic actions.

View Article and Find Full Text PDF

Covalent Inhibitor Screening for Targeting LOXL2: Studied by Virtual Screening and Experimental Validation.

Recent Pat Anticancer Drug Discov

January 2025

Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China.

Background: Lysyl oxidase-like 2 (LOXL2) is a metalloenzyme that catalyzes oxidative deamination ε-amino group of lysine. It has been found that LOXL2 is a promotor for the metastasis and invasion in kinds of tumors. Previous studies show that disulfide bonds are important components in LOXL2, and their bioactivity can be regulated by those bonds.

View Article and Find Full Text PDF

GLiDe: a web-based genome-scale CRISPRi sgRNA design tool for prokaryotes.

BMC Bioinformatics

January 2025

MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Background: CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern in CRISPRi applications.

Results: We introduce Guide Library Designer (GLiDe), a web-based tool specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in prokaryotic organisms.

View Article and Find Full Text PDF

NIST Mass Spectral Libraries in the Context of the Circular Economy of Plastics.

J Am Soc Mass Spectrom

January 2025

Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, 20899, United States.

Article Synopsis
  • The Mass Spectrometry Data Center (MSDC) is enhancing libraries for identifying plastics-related compounds (PRC) and materials (PRM) as part of NIST's circular economy initiative.
  • To increase the diversity of compounds analyzed, MSDC is utilizing three ionization methods: EI, ESI, and APCI, along with pyrolysis-gas chromatography (py-GC-MS) for solid materials.
  • Collaborating with agencies like the FDA and EPA, they are testing these libraries to address health risks and environmental issues concerning plastics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!