The low energy density and low cost performance of electrochemical capacitors (ECs) are the principal factors that limit the wide applications of ECs. In this work, we used enzymatic hydrolysis lignin as the carbon source and an ammonia activation methodology to prepare nitrogen-doped lignin-derived porous carbon (NLPC) electrode materials with high specific surface areas. We elucidated the free radical mechanism of ammonia activation and the relationship between nitrogen doping configurations, doping levels, and preparation temperatures. Furthermore, we assembled NLPC∥NLPC symmetric ECs and NLPC∥Zn asymmetric ECs using aqueous sulfate electrolytes. Compared with the ECs using KOH aqueous electrolyte, the energy densities of NLPC∥NLPC and NLPC∥Zn ECs were significantly improved. The divergence of charge storage characteristics in KOH, NaSO, and ZnSO electrolytes were compared by analyzing their area surface capacitance. This work provides a strategy for the sustainable preparation of lignin-derived porous carbons toward ECs with high energy densities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c22576 | DOI Listing |
Molecules
December 2024
Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China.
Utilizing lignin-derived activated carbon in supercapacitors has emerged as a promising approach to alleviating environmental pollution and promoting the high-value utilization of byproducts in the papermaking industry. In this study, activated carbons (LACs) were prepared using a simple one-step KOH activation approach and by employing enzymatic hydrolysis lignin (EHL). The impact of the KOH activation parameters on the microstructure and capacitive performance of the LACs was investigated by varying the KOH/EHL ratio and activation temperature.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Lignin-based porous carbon, a derivative of lignin, is acknowledged for its cost-effectiveness, stability, and environmental sustainability. It exhibits significant adsorption capacity for the removal of heavy metals and in wastewater treatment, rendering it a highly esteemed adsorbent material. However, the potential of lignin-derived porous carbon for the capture of iodine in environmental contexts has yet to be thoroughly investigated.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
College of Science, Hebei North University, Photovoltaic Conductive Film Engineering Research Center of Hebei Province, Zhangjiakou 075000, PR China. Electronic address:
The large-scale application of rechargeable Zn-air batteries (ZABs) necessitates the development of high-efficiency and cost-effective bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, the density functional theory calculations were performed to reveal the charge redistribution induced by the Co/CoO heterojunction integrating with N-doped carbon, which could optimize the d-band center, thereby accelerating O transformed into OOH* in the ORR and the conversion of O* into OOH* in OER. Guided by theoretical calculations, Co/CoO hetero-nanoparticles-decorated lignin-derived N-doped porous carbon nanofibers (Co-LCFs-800) were synthesized to use as an advanced self-supported bifunctional oxygen electrocatalyst.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China. Electronic address:
The efficient hydrogenolysis of CO ether bonds in lignin is the key for producing bio-oil and high-value chemicals. In this work, we synthesized a series of Ni-MOF-derived porous carbon spheres anchored Ni catalysts (Ni/C-x-T) with different metal/ligand molar ratios and calcination temperatures through solvothermal and carbothermal reduction method, and evaluated their catalytic transfer hydrogenolysis (CTH) performance for lignin model compounds using isopropanol as H-donor. The Ni/C-2-400 catalyst exhibited the excellent CTH performance, affording almost 100 % conversion of 2-phenoxy-1-phenylethanol even at a low reaction temperature of 120 °C.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemistry Department, Science Faculty, Ain Shams University, Cairo 11566, Egypt. Electronic address:
Innovative super-hydrophilic/superoleophobic eco-friendly sponge composite is fabricated by integrating chemically-modified cellulose with lignin derived from bio-waste wheat-straw. Such combination is implemented by modifying cellulose with thiadiazole-amide and integrating it with lignin using microwave/ultrasonic-powered in-liquid plasma. Physicochemical characteristics of sponge-composite (WL-TDAC) are studied using FTIR, N-physisorption, DLS, SEM, chemical-computational analysis, and surface wettability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!