Understanding the spatial distribution of charge carriers in III-V nanowires proximity coupled to superconductors is important for the design and interpretation of experiments based on hybrid quantum devices. In this letter, the gate-dependent surface accumulation layer of half-shell InAsSb/Al nanowires is studied by means of Andreev interference in a parallel magnetic field. Both uniform hybrid nanowires and devices featuring a short Josephson junction fabricated by shadow lithography, exhibit periodic modulation of the switching current. The period corresponds to a flux quantum through the nanowire diameter and is consistent with Andreev bound states occupying a cylindrical surface accumulation layer. The spatial distribution is tunable by a gate potential as expected from electrostatic models.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202108878DOI Listing

Publication Analysis

Top Keywords

surface accumulation
12
accumulation layer
12
andreev interference
8
layer half-shell
8
half-shell inassb/al
8
hybrid nanowires
8
spatial distribution
8
interference surface
4
inassb/al hybrid
4
nanowires
4

Similar Publications

Dual-Stage Cross-Flow Filtration: Integrated Capture and Purification of Virus-Like Particles.

Biotechnol Bioeng

December 2024

Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Virus-like particles (VLPs) are a versatile technology for the targeted delivery of genetic material through packaging and potential surface modifications for directed delivery or immunological issues. Although VLP production is relatively simple as they can be recombinantly produced using microorganisms such as Escherichia coli, their current downstream processing often relies on individually developed purification strategies. Integrating size-selective separation techniques may allow standardized platform processing across VLP purification.

View Article and Find Full Text PDF

Observed Effects on Very Early Pregnancy Linked to Ambient PM Exposure in China among Women Undergoing Fertilization-Embryo Transfer.

Environ Health (Wash)

December 2024

Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.

The adverse effect of ambient PM exposure on very early pregnancy (VEP) remains controversial among epidemiological studies but is supported by toxicological evidence. We adopted a multicenter retrospective cohort of 141,040 cycles to evaluate the effect of PM exposure on the VEP using the fertilization and embryo transfer platform and high-resolution PM data in China. We first investigated the association between PM exposure 1 week before and 1 week after the embryo transfer date and VEP.

View Article and Find Full Text PDF

The excessive accumulation of nitrate/nitrite (NO ) in surface and groundwater has severely disrupted the global nitrogen cycle and jeopardized public health. The electrochemical conversion of NO to ammonia (NH) not only holds promise for ecofriendly NO removal, but also provides a green alternative to the energy-intensive Haber-Bosch process for NH production. Recently, in addition to the electrocatalyst design explosion in this field, many innovative valorization systems based on NO -to-NH conversion have been developed for generating energy and expanding the range of value-added products.

View Article and Find Full Text PDF

[Characteristics and Comprehensive Quality Assessment of Heavy Metals in Soil-crop System of High Geological Background Area].

Huan Jing Ke Xue

January 2025

Chongqing Key Laboratory of Land Quality Geological Survey, Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration, Chongqing 400038, China.

Heavy metals (HMs) pollution in agricultural soil-rice systems has attracted worldwide attention as it directly threatens regional ecological security and human health. To understand the heavy metal pollution of agriculture soil and rice in the high geological background areas, a total of 200 paddy soil and rice samples were collected in southeast Chongqing. The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in paddy soil and rice were analyzed.

View Article and Find Full Text PDF

Soil heavy metal (HM) pollution is a prominent global environmental problem. Understanding the risk characteristics and quantitative analysis of potential sources of soil HM pollution is of great significance for accurate prevention and control, scientific management, and safe utilization of soil resources. In the surface soil of Shanxian County, the contents of eight HMs, such as As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, were collected and identified in 330 surface soil samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!